ADDFORCE

新製品カタログ

革新をもたらす倍速製品群

www.tungaloy.co.jp

we improve...
we evolve...
we ADD

タンガロイの革新的な スマート工場

タンガロイは、切削工具業界のリーダーとして、卓越した加工性能を有する最新の材種、工具を提供し新たなイノベーションを巻き起こします。

業界全体がインダストリー 4.0 へと大きく舵を切る中、 タンガロイは一歩進んだデジタルサービスと先進的な 『ADDFORCE 製品群』で、お客様の競争力向上に 貢献していきます。

革新をもたらす倍速製品群

目次

6 材種

10 溝入れ・突切り

- 12 AddForceCut
- 20 AddInternalCut
- 24 TungFeedBlade
- 28 TetraForce-Cut
- 32 DuoJust-Cut

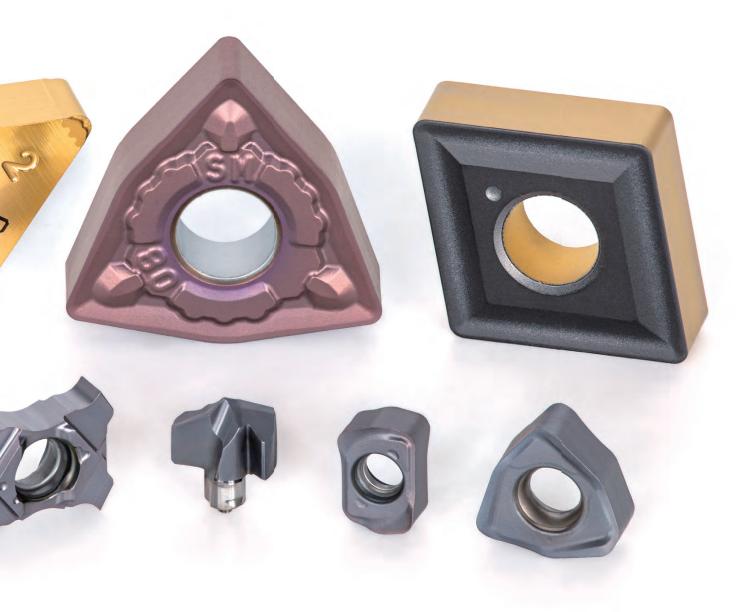
40 旋削

- 42 BoreMeister
- 52 TinyMiniTurn
- 60 MiniForceTurn /
 WavyJoint CBN
- 64 ModuMiniTurn

78 転削

- 80 AddDoFeed
- 86 DoFeed
- 94 DoFeedTri
- 100 Tung-Tri
- 104 TungForce-Rec
- 112 DoMultiRec
- 116 TungMeister

138 穴あけ


- 140 AddMeisterDrill
- 146 DrillMeister
- 166 Solid4FlutesDrill
- 170 ReamMeister

材種

コーティング

CVD

		_	コーティン	グ層			# # ± +
		材種名	主構成	厚さ (µm)	用途	特長	版 海 転 パ 削 入 制 わ け
Ne	w	T6215 P10 - P30 M10 - M30	TiCN-Al2O3	8	P _M	- ステンレス鋼加工の高速連続切削において、優れた耐摩耗性を発揮	
		T3225 P20 - P35 M20 - M35	TiCN-Al2O3	10	P _M	- 耐チッピング性と耐欠損性に優れる材種 - 鋼やステンレス鋼の転削加工に最適	
		T1215 K10 - K25	TiCN-Al2O3	10	K	- 耐摩耗性と耐チッピング性に優れる材種 - 鋳鉄の転削加工に最適	
Ne	w	T505 K05 - K20	TiCN + Al2O3	23	K	- 優れた耐摩耗性 - K05 - K20領域での高速加工に最適	

${\sf PVD}$

	_	コーティング	グ層 			旋	溝	転力	· 穴
材種	名	主構成	厚さ (µm)	用途	特長	削	満入れ	削る	あけ
P15 M15 K15	1120 - P25 - M25 - K30 - S25	(Ti, Al)N	3	P M K S	- 耐摩耗性と耐欠損性のバランスに優れる材種 - 鋼、ステンレス鋼、鋳鉄の一般的な加工に最適				
P25	1130 - P40 - M40	(Ti, Al)N	3	P _M	- 高い耐チッピング性、耐欠損性を誇る - オーステナイト系ステンレス鋼の汎用的な加工に最適				
P15	1715 - P30 - M30	(Ti, Al)N	5	P _M	- ステンレス鋼加工における第一推奨材種 - 高い汎用性を有し、優れた耐摩耗性と耐欠損性を発揮				
P15 · M15 · K25	1725 - P30 - M30 - K30 - S25	(Ti, Al)N	2	P M K S	- 耐摩耗性と耐チッピング性のバランスに優れる材種 - 鋼やステンレス鋼の汎用的な加工に最適				
P20	6225 - P30 (- M30	(TiAl)N-Ti(C,N)	5.5	P _M	- ステンレス鋼加工における第一推奨材種 - 高い汎用性を有し、優れた耐摩耗性と耐欠損性を発揮				
		(TiAI)N-Ti(C,N)	5.5	P _M	- ステンレス鋼加工において優れた耐欠損性を発揮 - 断続加工、重切削において高い信頼性を発揮				
P20 M20	7025 - P30 - M30 - S25	(Ti, Al)N	3.5	P M K S	- 極めて優れた耐摩耗性と高い靱性 - 多くの被削材に対応できる溝入れ加工用第一推奨材種				
	1750 - H30	(Ti, Al)N	3	H	- 耐摩耗性に優れる - 高硬度材転削加工用材種				
M01	8005 - M10 - S10	(AI,Ti)N	3.5	M S	- 優れた耐摩耗性と耐凝着性を誇る材種 - 耐熱合金の高速切削で優れた性能を発揮				
M10	8015 - M20 - S20	(AI,Ti)N	3.5	P M K S	- 耐摩耗性と耐欠損性を最適にバランス設計 - 耐熱合金の汎用加工における第一推奨材種				
P20	3225 - P35 - M35	(Ti, Al)N	5	P _M	- 耐摩耗性と耐欠損性のバランスに優れる - 鋼・ステンレス鋼の加工に最適				

PVD

	コーティン	グ層			+=)##	±-	_
材種名	主構成	厚さ (µm)	用途	特長	爬削	海入れ	割	バあけ
AH3035 P20 - P45 H20 - H30	(Ti, Al)N	5	PH	- 耐摩耗性と耐チッピング性のバランスに優れる材種 - 高硬度鋼の高送り加工に適する				
AH9130 P15 - P35 M25 - M35 K10 - K25 S15 - S30	(Ti, Al)N	4.5	P M	- 高い耐摩耗性を誇る - 多くの被削材に対応できる穴あけ加工用材種				
SH725 P20 - P30 M20 - M30	(Ti, Al)N	2	P M N S	- 高い耐摩耗性を発揮 - 鋼・ステンレス鋼加工用材種				
SH730 P20 - P35 M20 - M35 S05 - S15	(Ti, Al)N	1	PM	- 耐摩耗性に優れる - 鋼・ステンレス鋼・難削材加工用材種				

CBN

材種名	硬さ (Hv)	抗折力 (GPa)	用途	特徴	旋消	構 転 入 削 れ	穴あけ	
BXA10	3200 ~ 3400	1.00 ~ 1.10	H	- 焼入れ鋼の連続〜弱断続加工において抜群の耐摩耗性を発揮				
BXA20	3300 ~ 3500	1.30 ~ 1.50	H	- 焼入れ鋼の弱断続〜断続加工において安定した寿命性能を発揮する汎用材種				

PCD (T-DIA)

材種名	, 粒径 ¹ (μ n		抗折力 (GPa)	用途	特徴	旋消えれ	ちり	京があけ	35
DX11) <1	8500	1.8	N	- 刃立ち性が良く、高品位の仕上げ面を実現 - 非鉄金属、非金属の仕上げ加工用材種				

■超硬合金

材種名	硬さ (HRA)	抗折力 (GPa)	用途	特長	旋溝りれれ	転削	穴あけ
KS05F K05 S05 N05	93	2.9	K S	- 微粒系超硬合金を使用。優れた刃立ち性と高い耐摩耗性を誇る。 - 非鉄金属加工で抜群の寿命性能を発揮する。			
KS15F N15	91.5	3	N	- 微粒系超硬合金を使用。 耐摩耗性と耐欠損性を高い次元で両立。 - 非鉄金属のフライス加工で抜群の信頼性を発揮する。			

- 12 AddForceCut
- 20 AddInternalCut
- 24 TungFeedBlade
- 28 TetraForce-Cut
- 32 DuoJust-Cut

外径溝入れ・突切り加工

優れた安定性と高能率を実現する 深溝・突切り加工用工具

ADD 高剛性セルフクランプ機構により、 深溝入れや突切り加工で抜群の信頼性を発揮

- 1 コーナ仕様インサートを、ねじのない新セルフ 新設計のインサート形状により、切りくず流れ り加工に最適
- 3点クランプと確実なストッパーで、高いインサー トクランプ剛性を実現
- クランプ方式で保持。深溝の加工や大径の突切を確実に制御。安定した切りくず排出性を実現

ラインナップ

インサート

- QGM..., QGS...
- 溝幅: CW = 2, 3, 4, 5 mm
- 最大溝深さ (一体型ホルダ): CDX = 33 mm

ツールホルダ

一体型ホルダ:

- QSER/L...: 20 角、25 角

ブレード:

- QSP..., QSG...

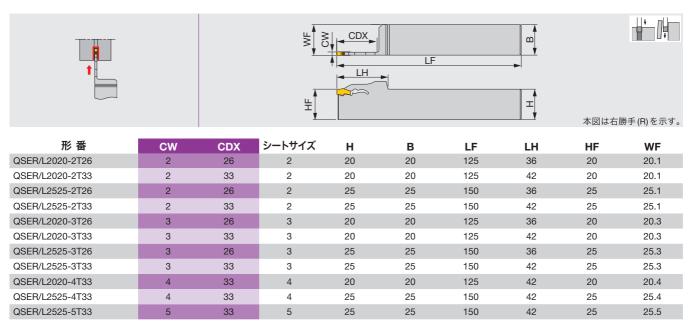
ツールブロック:

- CTBU..., CHTBR/L... BoreMeister (ボア・マイスター) 用内径ヘッド:

- S25-QSIR/L..., S32-QSIR/L... タイプ

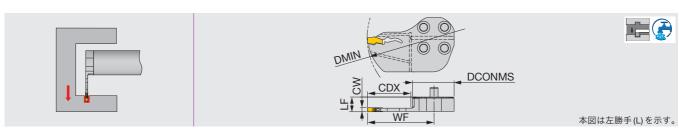
材種

- AH7025: 耐摩耗性と耐チッピング性を兼ね備えた溝入れ汎用材種



ニニホルダ

QSER/L

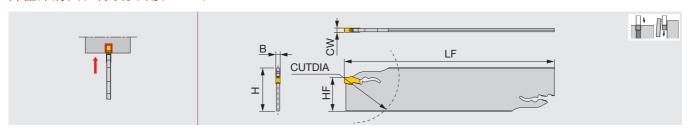

外径溝入れ、突切り用バイト

ヘッド

S-QSIR/L-H 内径溝入れ用ヘッド

BOREMEISTER

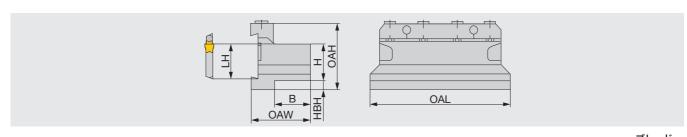
形 番	cw	CDX	DMIN	DCONMS	シートサイズ	LF	WF	シャンク
S25-QSIR/L2T26D550-H	2	26	55	25	2	8.5	40.1	D25
S25-QSIR/L3T26D550-H	3	26	55	25	3	9	40.1	D25
S32-QSIR/L3T32D700-H	3	32	70	32	3	11	49.6	D32
S32-QSIR/L4T32D700-H	4	32	70	32	4	11.5	49.6	D32


ヘッドが取付くシャンクは、BoreMeister (ボア・マイスター) のタンガロイレポート(TR517)をご参照ください。

ブレード

QSP

外径深溝入れ、突切り用ブレード



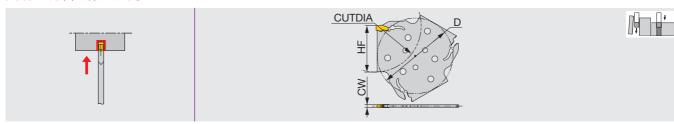
形 番	CW	CUTDIA	シートサイズ	н	В	LF	HF
QSP26-2D	2	50	2	26	1.8	150	21.1
QSP32-2D	2	66	2	32	1.8	150	24.5
QSP26-3D	3	75	3	26	2.4	150	21.1
QSP32-3D	3	120	3	32	2.4	150	24.5
QSP26-4D	4	80	4	26	3.2	150	21
QSP32-4D	4	120	4	32	3.2	150	24.4
QSP32-5D	5	120	5	32	4	150	24.4

ツールブロック

CTBU

QSPブレード用ツールブロック(分割型)

形 番	н	В	OAL	LH	НВН	OAH	OAW	フレード (オプション)
CTBU20-26	20	21	86	21.4	9	43	38	QSP26
CTBU25-26	25	23	110	21.4	5	45	43	QSP26
CTBU20-32	20	19	100	24.8	13	50	38	QSP32
CTBU25-32	25	23	110	24.8	8	50	42	QSP32
CTBU32-32	32	29	110	24.8	5	54	48	QSP32

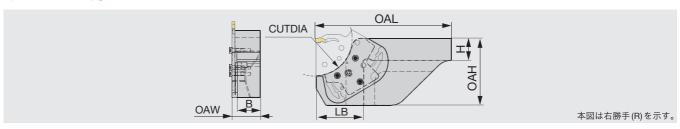


ブレード

QSG

突切り、外径溝入れ用ブレード

形 番	CW	シートサイズ	CUTDIA	HF	D
QSG52-2T	2	2	52	27	48.3
QSG82-2T	2	2	82	42	69.3
QSG52-3T	3	3	52	27	48.3
QSG82-3T	3	3	82	42	69.3
QSG120-3T	3	3	120	61	88
QSG52-4T	4	4	52	27	69.3
QSG82-4T	4	4	82	42	69.3
QSG120-4T	4	4	120	61	88
QSG120-5T	5	5	120	61	88

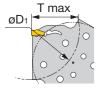


ツールブロック

CHTBR/L

QSGブレード用ツールブロック

形番	CUTDIA	Н	В	OAL	OAH	OAW	LB
CHTBR/L2020-52	52	20	20.5	100	50	26.5	37
CHTBR/L2525-52	52	25	25.5	125	50	31.5	37
CHTBR/L2020-82	82	20	20.5	140	75	26.5	53
CHTBR/L2525-82	82	25	25.5	150	75	31.5	53
CHTBR/L2525-120	120	25	25.5	165	100	31.5	67
CHTBR/L3232-120	120	32	32.5	165	100	38.5	67

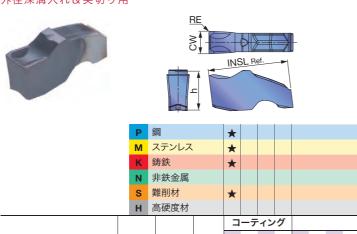

ブレード締付けねじがインサート刃先よりも最大 3.1 mm 突き出しているため、チャック等への干渉にご注意ください。

■ 溝入れ加工範囲(最大溝深さ: T max とワーク径: øD1 の関係)

			-			-			•									
形番									øl	D ₁								
CHTBR/L****-D52	53	54	55	56	58	60	62	65	68	72	78	84	92	102	115	133	159	198
CHTBR/L****-D82	104	108	112	116	121	127	134	142	151	162	176	192	212	237	270	313	375	468
CHTBR/L****-D120	205	214	224	235	247	261	278	297	319	345	376	414	462	522	601	709	865	1112
T max	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4
形番							~D.											
形 苗							øD ₁											
CHTBR/L****-D82	83	84	84	85	86	87	89	90	92	94	96	98	101					

形 番							øD1						
CHTBR/L****-D82	83	84	84	85	86	87	89	90	92	94	96	98	101
CHTBR/L****-D120	144	147	150	153	156	160	164	168	173	178	184	190	197
T max	34	33	32	31	30	29	28	27	26	25	24	23	22

形番									øD1								
CHTBR/L****-D120	121	122	123	124	125	126	127	128	129	130	131	133	134	136	138	140	142
T max	55	52	50	48	47	46	45	44	43	42	41	40	39	38	37	36	35

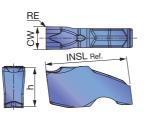


インサート

QGM

外径深溝入れ&突切り用

★:第一選択


				⊐	ーティング		
形番	シート サイズ	CW±0.05	RE	AH7025		INSL	h
QGM2-020	2	2	0.2			11	5.3
QGM3-020	3	3	0.2			11	5.3
QGM4-030	4	4	0.3	•		13	7.3
QGM5-030	5	5	0.3			13	7.3

●:新製品

QGS

外径深溝入れ&突切り用

Р	鋼	*		
M	ステンレス	*		
K	鋳鉄	*		
N	非鉄金属			
S	難削材	*		
Н	高硬度材			

★:第一選択

				コーティング		
形番	シート サイズ	CW±0.05	RE	AH7025	INSL	h
QGS2-020	2	2	0.2		11	5.3
QGS3-020	3	3	0.2		11	5.3
QGS4-030	4	4	0.3		13	7.3
QGS5-030	5	5	0.3		13	7.3

●: 新製品

■標準切削条件

				切削速度	送り : f (ı	mm/rev)
ISO	被削材	硬 度	材種	Vc (m/min)	QGM	QGS
P	鋼 S45C, SCM435 など	< 300 HB	AH7025	50 - 180	0.05 - 0.35	0.04 - 0.2
M	ステンレス鋼 SUS303, SUS304 など	< 200 HB	AH7025	50 - 120	0.05 - 0.35	0.04 - 0.2
K	ねずみ鋳鉄 FC250 など	-	AH7025	50 - 180	0.05 - 0.35	0.04 - 0.2
	ダクタイル鋳鉄 FCD450 など	-	AH7025	50 - 120	0.05 - 0.35	0.04 - 0.2
S	耐熱合金 インコネル 718 など	< HRC 40	AH7025	20 - 60	0.05 - 0.35	0.04 - 0.2
3	チタン合金 Ti-6Al-4V など	< HRC 40	AH7025	20 - 80	0.05 - 0.35	0.04 - 0.2

内径溝入れ加工

独創的な 4 コーナ仕様インサートの 内径溝入れ工具

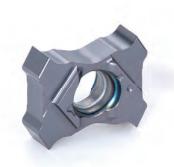
ADD 高いクランプ剛性で、優れた取付け時の繰返し刃先位置精度 と安定した溝入れ加工を実現

- 独創的なインサートクランプ機構により、高い 内部給油機構を備え、インサート近傍からクー 刃先位置精度。高精度な内径溝入れ加工が可
- 高いクランプ剛性で加工時のインサートの挙動 を抑制
- ラントを供給。高い切りくず排出性を実現
- インサートは左右どちらのホルダにも取付可能

ラインナップ

インサート

- TCIG10...

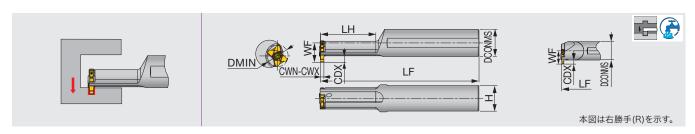

溝幅: CW = 1.5, 2, 2.5 mm 最大溝深さ: CDX = 2 mm 最小加工径: DMIN = Ø10.5 mm

ツールホルダ

- A12H-STCIR/L...
- E12K-STCIR/L...

材種

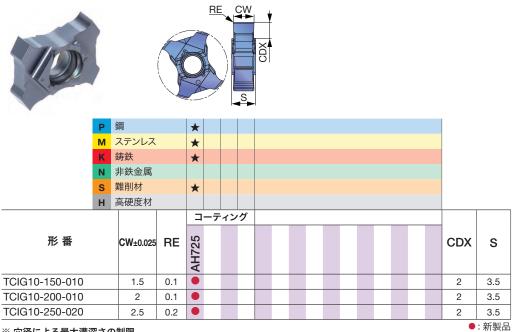
- AH725: 耐チッピング性に優れた汎用材種で、あらゆる被削材に対応可能



■ ホルダ

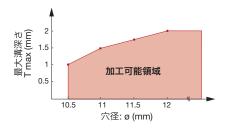
A/E-STCIR/L

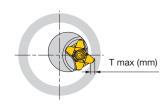
内径溝入れ用バイト



形 番	材 種	CWN	CWX	シートサイズ	DMIN	DCONMS	LH	LF	WF	Н	インサート	トルク*
A12H-STCIR/L10-D105	鋼	1.5	2.5	10	10.5	12	24	100	8.3	11	TCIG10	1
A12H-STCIR/L10-D120	鋼	1.5	2.5	10	12	12	30	100	8.3	11	TCIG10	1
E12K-STCIR/L10-D150	超硬	1.5	2.5	10	15	12	-	125	8.3	11	TCIG10	1

^{*} トルク:推奨締付けトルク (N·m)


インサート

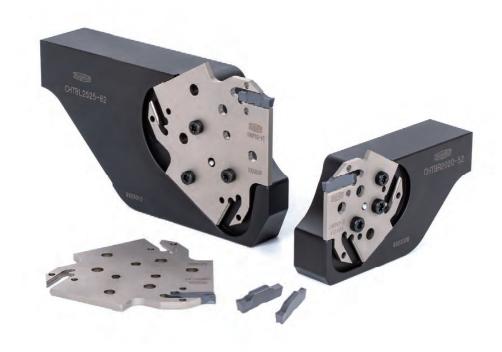

TCIG

※ 穴径による最大溝深さの制限

穴径がø11.5 mm以下の場合、最大溝深さ: T max が制限されます。 ø11.5 mm以下で使用する場合は、最大溝深さの確認をお願いします。

■標準切削条件

ISO	被削材	硬度	選択基準	切削速度 <i>V</i> c (m/min)	送り f (mm/rev)
P	鋼 S45C, SCM435 など	< 300 HB	第一選択	50 - 180	0.02 - 0.08
M	ステンレス鋼 SUS303, SUS304 など	< 200 HB	第一選択	50 - 120	0.02 - 0.08
S	チタン合金 Ti-6Al-4V など	< HRC 40	第一選択	20 - 80	0.02 - 0.08


外径溝入れ・突切り加工

高い工具剛性で多種多様な加工のできる 溝入れ·突切り用ホルダ

ADD 高送りによる高能率加工を実現

- 新設計の高剛性ホルダ形状により、圧倒的な 安定性と高能率加工を実現
- 専用ツールブロックは独自の2 面拘束形状によ り、高い工具剛性を実現
- 独自の下あごのサポートが加工中のびびりを抑 え、優れた仕上げ面と真直性を実現
- 『TungCut (タング・カット)』 シリーズのブレード と、最新の『AddForceCut (アド・フォース・カット)』 のブレードはツールブロックの共用が可能
- 『TungCut (タング・カット)』 シリーズのインサー トを使用するブレードも、クランプ剛性が高く 信頼性が抜群
- 1コーナタイプインサートを使用する最新の 『AddForceCut (アド・フォース・カット)』 のブレー ドは、高送りによる高能率加工が可能

ラインナップ

インサート

- DGM..., DGS..., SGM..., SGS..., DGL...

ブレード

- CHGP...

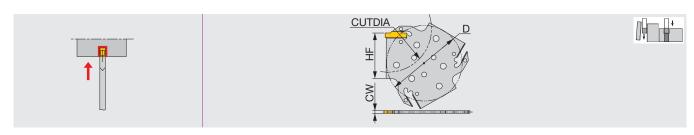
溝幅: CW = 2 - 4 mm

最大突切り径: CUTDIA = Ø52, Ø82 mm

ツールブロック

- CHTBR/L...: 20 角、25 角

上記新シリーズ 以外の情報は こちらから。

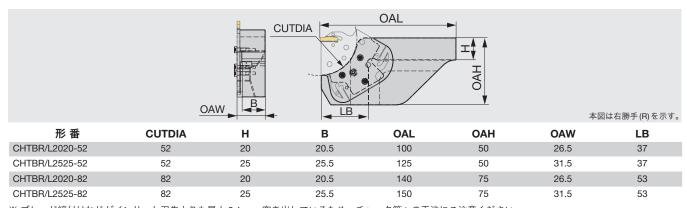


ブレード

CHGP

突切り、外径溝入れ用ブレード

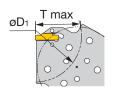
形 番	CW	シートサイズ	CUTDIA	HF	D
CHGP52-2T	2	2	52	27	48.3
CHGP52-3T	3	3	52	27	48.3
CHGP82-3T	3	3	82	42	69.3
CHGP82-4T	4	4	82	42	69.3


溝深さがインサート全長-1.5 mmを越える場合は、1コーナタイプインサートを使用してください。

ツールブロック

CHTBR/L

CHGPブレード用ツールブロック



[※] ブレード締付けねじがインサート刃先よりも最大 3.1 mm 突き出しているため、チャック等への干渉にご注意ください。

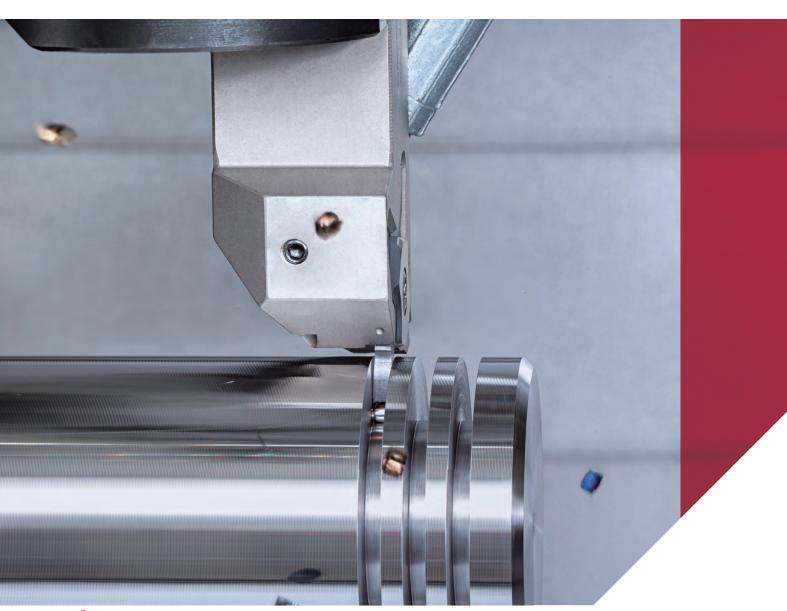
■ 溝入れ加工範囲(最大溝深さ: T max とワーク径: øD₁ の関係)

形番									Ø	D ₁								
CHTBR/L****-D52	53	54	55	56	58	60	62	65	68	72	78	84	92	102	115	133	159	198
CHTBR/L****-D82	104	108	112	116	121	127	134	142	151	162	176	192	212	237	270	313	375	468
T max	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4

形番	øD1											
CHTBR/L****-D82	83	84	85	86	87	89	90	92	94	96	98	101
T max	34	33	31	30	29	28	27	26	25	24	23	22

■標準切削条件

ISO	被削材	硬 度	材種	切削速度 Vc (m/min)
P	鋼 S45C, SCM435 など	< 300 HB	AH7025	50 - 180
M	ステンレス鋼 SUS303, SUS304 など	< 200 HB	AH7025	50 - 120
	ねずみ鋳鉄 FC250 など	-	AH7025	50 - 180
	ダクタイル鋳鉄 FCD450 など	-	AH7025	50 - 120
	耐熱合金 インコネル 718 など	< HRC 40	AH7025	20 - 60
S	チタン合金 Ti-6Al-4V など	< HRC 40	AH7025	20 - 80



外径溝入れ・突切り加工

最大溝深さ 10 mm が可能な TCL38 追加

ADD より深く、精度の高い溝入れが可能に

- 独自のポケット形状により、インサートを確実に クランプ。優れた刃先位置精度を実現
- インサートは左右どちらのホルダにも取付可能
- インサート締付けねじは、背面からの操作も可 能。高い操作性でインサート交換時間を削減
- 最大溝深さ 10 mm に対応する TCL38 サイズ は、高精度溝入れ加工だけでなく、肉厚円筒 の突切り加工にも適用可能
- 内部給油式ホルダも設定。切りくず排出性の 向上、インサートの長寿命化に威力を発揮

ラインナップ

インサート

- TCL38...

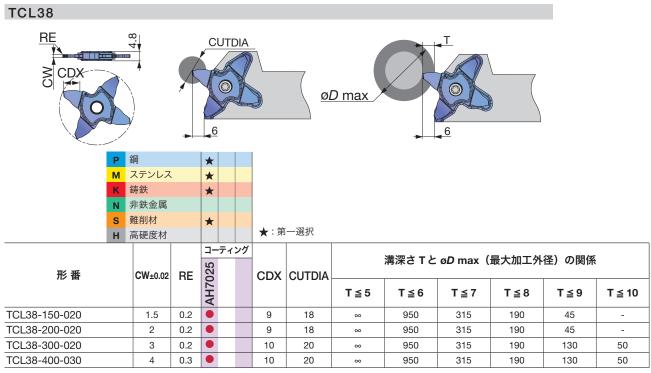
溝幅: CW = 1.5 - 4 mm 最大溝深さ: CDX = 10 mm

最大突切り径: CUTDIA = Ø20 mm

ツールホルダ

一体型ホルダ:

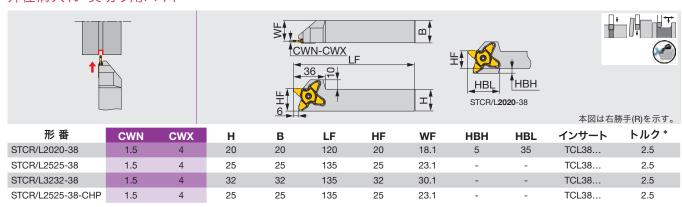
- STCR/L**38: 20 角、25 角、32 角


- STCR/L**38-CHP (内部給油型): 25 角

- AH7025: 耐摩耗性と耐チッピング性を兼ね備えた溝入れ汎用材種

上記新シリーズ 以外の情報は こちらから。

インサート



●: 新製品

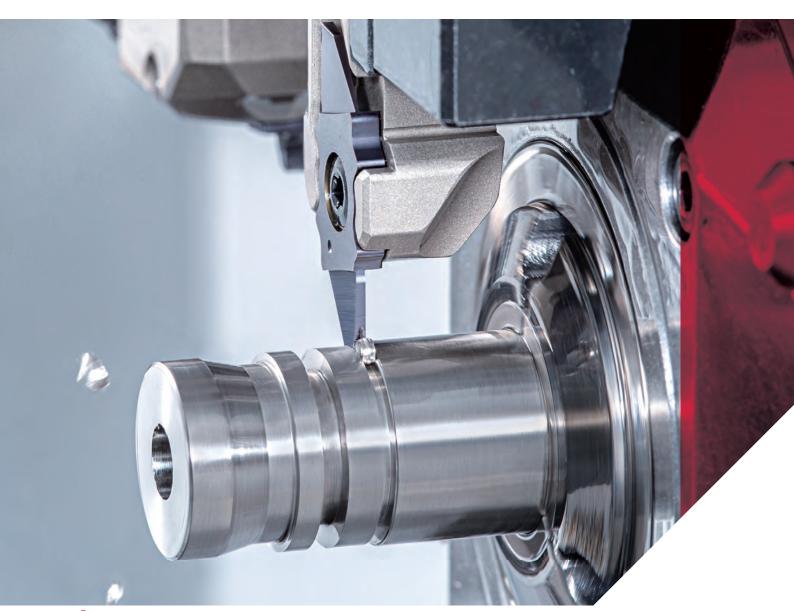
■ホルダ

STCR/L-38 (-CHP)

外径溝入れ・突切り用バイト

^{*}トルク:推奨締付けトルク (N·m)

■■標準切削条件


ISO	被削材	材種	切削速度 Vc (m/min)	送り f (mm/rev)
	鋼 S45C など	AH7025	80 - 180	0.03 - 0.18
	合金鋼 SCM435 など	AH7025	50 - 180	0.03 - 0.18
M	ステンレス SUS303, SUS304 など	AH7025	50 - 150	0.03 - 0.14
K	ねずみ鋳鉄 FC250 など	AH7025	50 - 180	0.03 - 0.14
	ダクタイル鋳鉄 FCD400 など	AH7025	50 - 120	0.03 - 0.14
	チタン、チタニウム合金 Ti-6Al-4V など	AH7025	30 - 60	0.03 - 0.14
S	耐熱合金 インコネル718 など	AH7025	20 - 50	0.03 - 0.14

外径溝入れ・突切り加工

高剛性クランプ機構を備えた突切り工具

ADD 直径 Ø20 mm 以下の突切り・ねじ切り加工の安定性を実現

- 独創的なクランプ機構で、安定した突切り加工 が可能。未使用コーナを保護し、欠損を防止
- 同一ホルダに 4 サイズのインサートを取り付け 可能。突切り径に応じた最適なインサートサイ ズを選択でき、安定した加工が可能
- 高機能な3次元ブレーカにより切りくず形状を 制御し、切りくずの噛込みによる欠損や加工面 品位の悪化を解消
- 溝幅 0.6, 0.8 mm インサートに 3 次元ブレーカ 付きを設定。量産加工での材料消費量を削減 し、高い経済性を発揮
- 自動盤から小型旋盤まで適用可能なホルダを ラインナップ。内部給油式の『TungTurn-Jet (タ ング・ターン・ジェット)』と3次元ブレーカの組合 せにより高生産性・高能率加工を実現
- 高機能な3次元ブレーカ付き多機能 PCD イン サート JXDX タイプを設定。複雑形状を持つア ルミ部品の一筆書き加工に最適

ラインナップ

インサート

- JXPS06R/L06F

溝幅: CW = 0.6 mm

最大突切り径: CUTDIA = Ø6 mm

- JXPS12R/L08F

溝幅: CW = 0.8 mm

最大突切り径: CUTDIA = Ø12 mm

- JXDX12R..., 16R... 溝幅: CW = 2, 2.5 mm 最大溝深さ: CDX = 7 mm

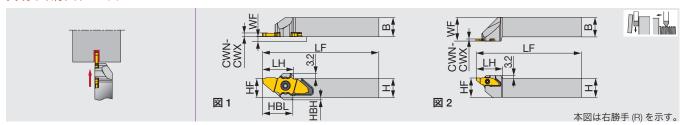
材種

- SH725: 専用の新コーティング膜と高靭性母材の組合せにより 長寿命化を実現

- DX110: 刃立ち性に優れ高品位の安定した仕上げ面が得られる

ツールホルダ

- JSXXR/L...
- JSXXR/L**-S
- JSXXR/L**-CHP(内部給油型)
- JSXXR/L**-S-CHP(内部給油型)



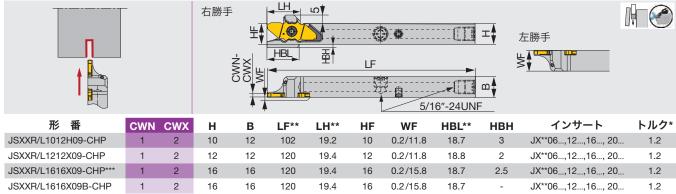
■ホルダ

JSXXR/L

突切り、溝入れバイト

形番	CWN	CWX	Н	В	LF**	LH**	HF	WF	HBL**	нвн	インサート	トルク*	図
JSXXR/L1010X09	1	2	10	10	120	19.65	10	0.2	19	3	JX**06,12,16, 20	1.2	1
JSXXR/L1212F09	1	2	12	12	85	19.65	12	0.2	19	1.5	JX**06,12,16, 20	1.2	1
JSXXR/L1212X09	1	2	12	12	120	19.65	12	0.2	19	1.5	JX**06,12,16, 20	1.2	1
JSXXR/L1616X09	1	2	16	16	120	19.65	16	0.2	-	-	JX**06,12,16, 20	1.2	1
JSXXR/L2020H09	1	2	20	20	100	22.5	20	0.2	-	-	JX**06,12,16, 20	1.2	1
JSXXR/L2525Z09	1	2	25	25	135	34	25	30	-	-	JX**06,12,16, 20	1.2	2

^{*}トルク:推奨締付けトルク (N·m)

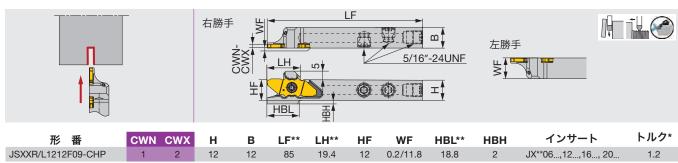

** "LF" "LH" "HBL" の値は、JX**16... インサートの場合で算出しています。 JX**12... インサート使用の場合は、"LF" "LH" "HBL" ともに 2 mm 短くなります。JX**06... インサート使用の場合は、"LF" "LH" "HBL" ともに 4 mm 短くなります。 JX**20... インサート使用の場合は、"LF" "LH" "HBL" ともに 2 mm 長くなります。

注意:右勝手のホルダ (JSXXR...) には、右勝手の (JX****R...) インサートを使用。 左勝手のホルダ (JSXXL...) には、左勝手のインサート (JX****L...) を使用。

JSXXR/L-X-CHP

TUNGTJËT

自動盤用突切りバイト、ダイレクト給油対応

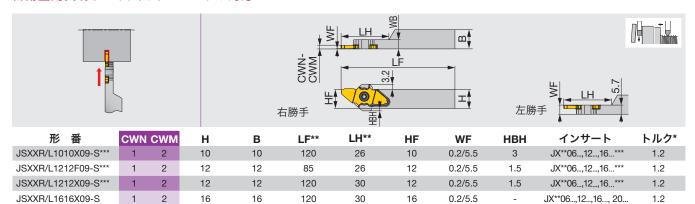

* トルク: 推奨締付けトルク (N·m)
** "LF" "LH" "HBL" の値は、JX**16...インサートの場合で算出しています。
JX**12** インサート使用の場合は、"LF" "LH" "HBL" ともに 2 mm 短くなります。JX**06... インサート使用の場合は、"LF" "LH" "HBL" ともに 2 mm 短くなります。
JX**20... インサート使用の場合は、"LF" "LH" "HBL" ともに 2 mm 長くなります。

注意:右勝手のホルダ (JSXXR...) には、右勝手の (JX****R...) インサートを使用。左勝手のホルダ (JSXXL...) には、左勝手のインサート (JX****L...) を使用。

JSXXR/L-F-CHP

自動盤用突切りバイト

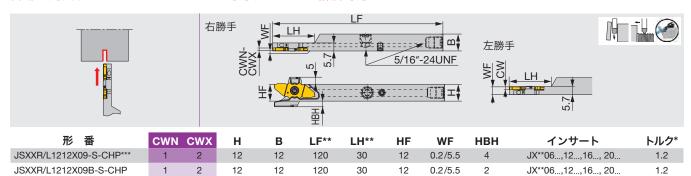
- * トルク:推奨締付けトルク (N·m) *** "LF" "LH" "HBL" の値は、JX**16... インサートの場合で算出しています。 JX**12... インサート使用の場合は、"LF" "LH" "HBL" ともに 2 mm 短くなります。 JX**06... インサート使用の場合は、"LF" "LH" "HBL" ともに 2 mm 短くなります。 JX**06... インサート使用の場合は、"LF" "LH" "HBL" ともに 2 mm 長くなります。


注意:右勝手のホルダ (JSXXR...) には、右勝手の (JX****R...) インサートを使用。左勝手のホルダ (JSXXL...) には、左勝手のインサート (JX****L...) を使用。

^{****}将来新製品に置き換わる製品です。

JSXXR/L-S

自動盤用突切りバイト、サブスピンドル対応



* トルク:推奨締付けトルク (N·m)
** "LF" "LH" の値は、JX**16... インサートの場合で算出しています。
JX**12... インサート使用の場合は、"LF" "LH" ともに 2 mm 短くなります。JX**06... インサート使用の場合は、"LF" "LH" ともに 4 mm 短くなります。JX**20... インサート使 3. イン・インサートは取付きません。 注意:右勝手のホルダ (JSXXR...) には、右勝手の (JX****R...) インサートを使用。左勝手のホルダ (JSXXL...) には、左勝手のインサート (JX****L...) を使用。

JSXXR/L-X-S-CHP

自動盤用突切りバイト、サブスピンドル対応、ダイレクト給油対応

JSXXR/L1616X09B-S-CHP * トルク:推奨締付けトルク (N·m)

JSXXR/L1616X09-S-CHP***

30

0.2/5.5

0.2/5.5

1.5

注意:右勝手のホルダ (JSXXR...) には、右勝手の (JX****R...) インサートを使用。 左勝手のホルダ (JSXXL...) には、左勝手のインサート (JX****L...) を使用。

120

120

16

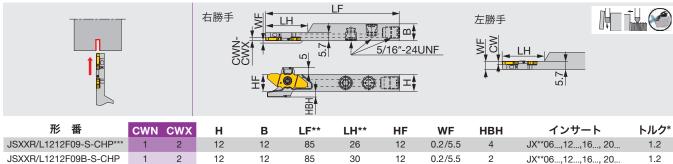
16

16

16

2

JSXXR/L-F-S-CHP



1.2

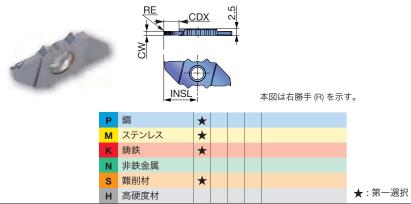
JX**06...,12...,16..., 20..

JX**06...,12...,16..., 20...

自動盤用突切りバイト、サブスピンドル対応

* トルク:推奨締付けトルク (N·m)
** "LF" "LH" の値は、JX**16... インサートの場合で算出しています。
JX**12... インサート使用の場合は、"LF" "LH" ともに 2 mm 短くなります。JX**06... インサート使用の場合は、"LF" "LH" ともに 4 mm 短くなります。JX**20... インサート使用の場合は、"LF" "LH" ともに 2 mm 長くなります。

注意:右勝手のホルダ (JSXXR...) には、右勝手の (JX****R...) インサートを使用。 左勝手のホルダ (JSXXL...) には、左勝手のインサート (JX****L...) を使用。

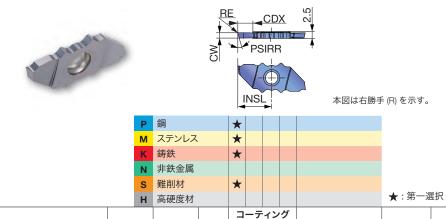

^{**} 将来新製品に置き換わる製品です。

^{**} 将来新製品に置き換わる製品です。

インサート

JXPS**R/L-F(3 次元ブレーカ/シャープエッジ)

				コーティング							
形番	勝手	CW±0.025	RE	SH725					CUTDIA	CDX*	INSL
JXPS06R06F	R	0.6	0.05						6	3.5	10.5
JXPS06L06F	L	0.6	0.05			П			6	3.5	10.5
JXPS12R08F	R	0.8	0.05						12	6.5	12.5
JXPS12L08F	L	0.8	0.05						12	6.5	12.5
JXPS12R10F	R	1	0.05			П			12	6.5	12.5
JXPS12L10F	L	1	0.05			П			12	6.5	12.5
JXPS12R15F	R	1.5	0.05						12	6.5	12.5
JXPS12L15F	L	1.5	0.05	•					12	6.5	12.5
JXPS16R15F	R	1.5	0.05	•					16	8.5	14.5
JXPS16L15F	L	1.5	0.05	•					16	8.5	14.5
JXPS20R20F	R	2	0.05	•					20	10.5	16.5
JXPS20L20F	L	2	0.05	•					20	10.5	16.5


^{*} ワーク径により最大溝深さ: CDX が変動します。

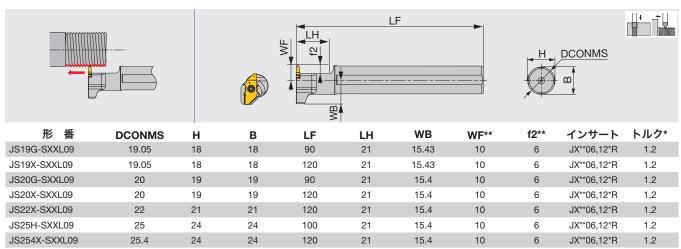
●: 2021 年 12 月発売予定 ●: 設定アイテム

JXDX**R-F (PCD	インサ-	- ト)												
RE CDX NSL														
	P													
	ステンレス													
	K	鋳鉄												
	N	非鉄金属		*										
	S	難削材												
	н	高硬度材											★:第一選	選択
					PC	D								
形番	勝手	CW±0.025	RE	DX110									CDX	INSL
JXDX12R20F	R	2	< 0.1										6	12.5
JXDX12R25F	R	2.5	< 0.1										6.5	12.5
JXDX16R25F	R	2.5	< 0.1										7	14.5
														▲・新制品

JXPG**R/L-F(シャープエッジ)

				コーテ	ィング					
形番	勝手	CW±0.025	RE	SH725			CUTDIA	CDX*	INSL	PSIRR/L**
JXPG06R10F	R	1	0.05				6	3.5	10.5	0°
JXPG06L10F	L	1	0.05				6	3.5	10.5	0°
JXPG06R15F	R	1.5	0.05				6	3.5	10.5	0°
JXPG06L15F	L	1.5	0.05				6	3.5	10.5	0°
JXPG06R10F-15	R	1	0.05				6	3.5	10.5	15°
JXPG06L10F-15	L	1	0.05				6	3.5	10.5	15°
JXPG06R15F-15	R	1.5	0.05				6	3.5	10.5	15°
JXPG06L15F-15	L	1.5	0.05				6	3.5	10.5	15°
JXPG12R15F	R	1.5	0.05				12	6.5	12.5	0°
JXPG12L15F	L	1.5	0.05				12	6.5	12.5	0°
JXPG12R20F	R	2	0.05				12	6.5	12.5	0°
JXPG12L20F	L	2	0.05				12	6.5	12.5	0°
JXPG12R15F-15	R	1.5	0.05				12	6.5	12.5	15°
JXPG12L15F-15	L	1.5	0.05				12	6.5	12.5	15°
JXPG12R20F-15	R	2	0.05				12	6.5	12.5	15°
JXPG12L20F-15	L	2	0.05				12	6.5	12.5	15°
JXPG16R15F	R	1.5	0.05				16	8.5	14.5	0°
JXPG16L15F	L	1.5	0.05				16	8.5	14.5	0°
JXPG16R20F	R	2	0.05				16	8.5	14.5	0°
JXPG16L20F	L	2	0.05				16	8.5	14.5	0°
JXPG16R15F-15	R	1.5	0.05	•			16	8.5	14.5	15°
JXPG16L15F-15	L	1.5	0.05	•			16	8.5	14.5	15°
JXPG16R20F-15	R	2	0.05	•			16	8.5	14.5	15°
JXPG16L20F-15	L	2	0.05	•			16	8.5	14.5	15°
JXPG20R15F	R	1.5	0.05	•			20	10.5	16.5	0°
JXPG20L15F	L	1.5	0.05	•			20	10.5	16.5	0°
JXPG20R20F	R	2	0.05	•			20	10.5	16.5	0°
JXPG20L20F	L	2	0.05				20	10.5	16.5	0°
JXPG20R15F-15	R	1.5	0.05				20	10.5	16.5	15°
JXPG20L15F-15	L	1.5	0.05				20	10.5	16.5	15°
JXPG20R20F-15	R	2	0.05	•			20	10.5	16.5	15°
JXPG20L20F-15	L	2	0.05				20	10.5	16.5	15°

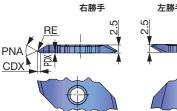
^{*} ワーク径により最大溝深さ: CDX が変動します。 **PSIRL: 左勝手 (L) インサート

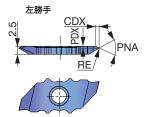

●: 設定アイテム

DUOJČUT

ホルダ

JS-SXXL09


自動盤用丸シャンクねじ切りバイト



インサート

JXTG12FR/L-60 (ねじ切り用/シャープエッジ)

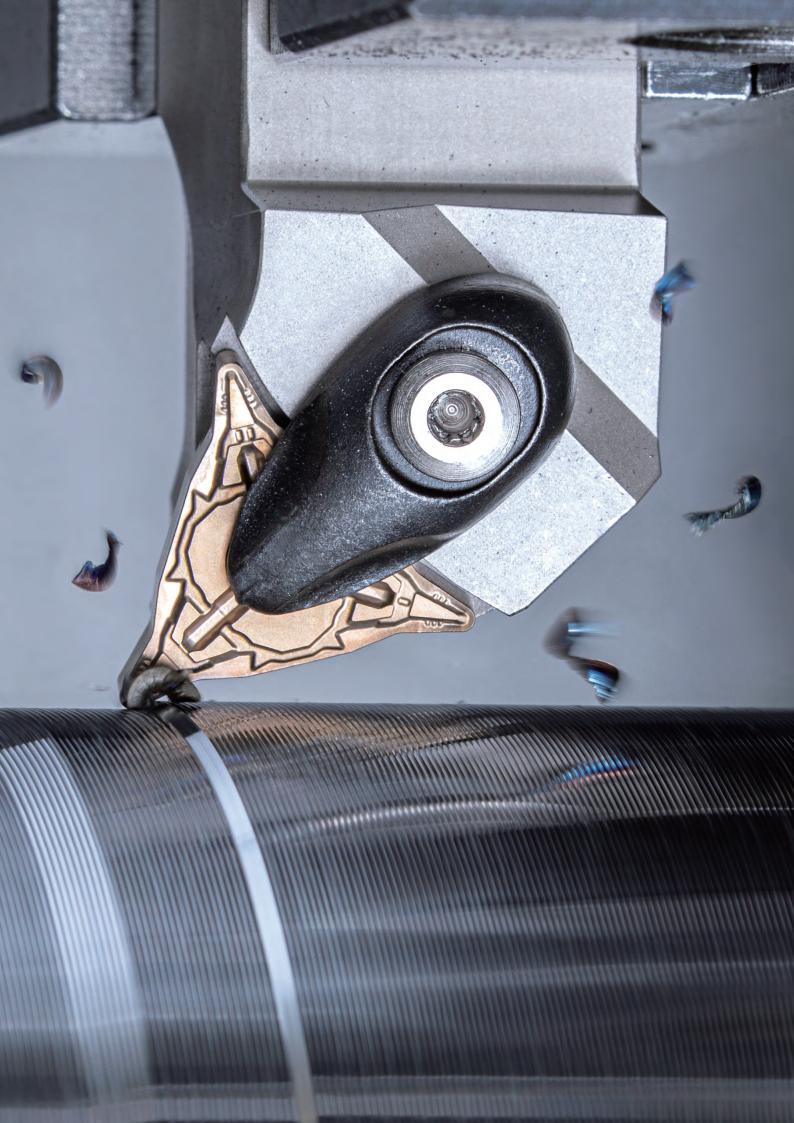
形番	RE	SH725					
/V H	KE	R	L	ピッチ	PDX	CDX	PNA
JXTG12FR/L-60A-000	フラット (0.05 max)	•	•	0.2 - 0.4	0.25	0.4	60°
JXTG12FR/L-60B-000	フラット (0.05 max)	•	•	0.2 - 0.4	2.25	0.4	60°
JXTG12FR/L-60A-005	0.05	•	•	0.4 - 1	0.6	0.99	60°
JXTG12FR/L-60B-005	0.05	•	•	0.4 - 1	1.9	0.99	60°
JXTG12FR/L-60N-010	0.1	•	•	1 - 1.5	1.25	2.07	60°

●: 設定アイテム

■ ねじ切りインサートの刃先位置と形番

	Aタイプ	Bタイプ	Nタイプ
右勝手	<u>a</u> <u>b</u> a > b	<u>a</u> <u>b</u> a < b	a = b
左勝手	<u>a</u> <u>b</u> a > b	<u>a</u> <u>b</u> a < b	<u>a</u> <u>b</u> a = b

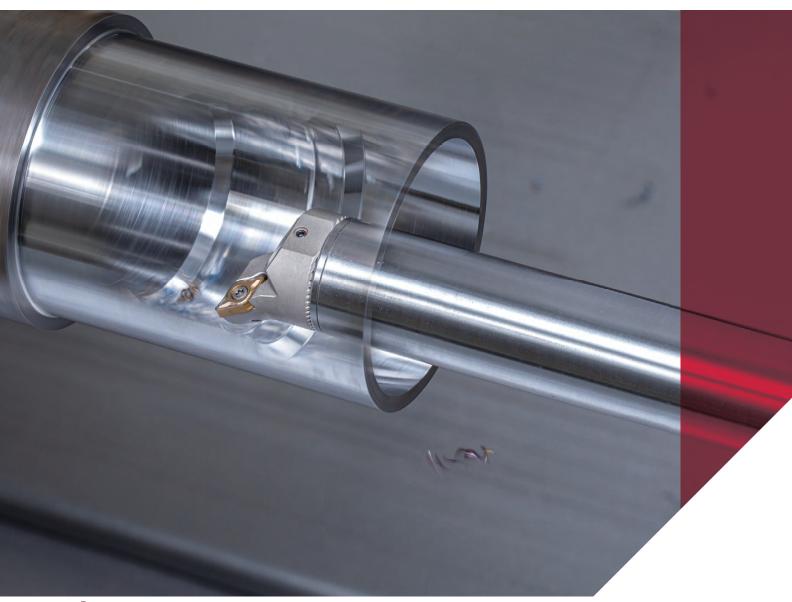
■■標準切削条件


突切り / 溝入れ

ISO	被削材	材種	切削速度 <i>V</i> c (m/min)	送り f (mm/rev)
	低炭素鋼 S15C, SS400 など	SH725	50 - 200	0.01 - 0.05
P	炭素鋼、合金鋼 S55C, など	SH725	50 - 200	0.01 - 0.05
	快削鋼 SUH22, SUH23 など	SH725	50 - 200	0.01 - 0.05
M	ステンレス鋼 SUS304, X5CrNiMo17-12-3 など	SH725	50 - 200	0.01 - 0.05
N	アルミ合金 A5056, A6061 など	SH725	150 - 200	0.01 - 0.05
	銅合金 C2600, C280C など	SH725	100 - 200	0.01 - 0.05
S	チタン合金 Ti-6Al-4V など	SH725	30 - 80	0.01 - 0.05
3	耐熱合金 インコネル718 など	SH725	30 - 80	0.01 - 0.05

アルミ加工用 PCD インサート

ISO	被削材	材 種	加工方法	切削速度 Vc (m/min)	送り f (mm/rev)	切込み ap (mm)
	アルミ合金	DX110	溝入れ	100 - 300	0.03 - 0.15	-
A5056, A606	A5056, A6061 など	DX110	横送り	100 - 300	0.03 - 0.15	< 6



内径旋削加工

振動抑制機構を備えた 深穴ボーリング加工用工具

ADD 高い安定性と精度を実現

- L/D = 10 までの長い突出しでの深穴加工でも、 振動抑制機構によりびびりを抑制
- ボーリングヘッドは、高精度なセレーション接合 で高剛性を維持
- 内部給油機構により、最大加工深さ L/D = 10 においても抜群の切りくず排出性を実現
- PSC 仕様のホルダも設定。幅広い設備に搭載 可能
- 幅広いボーリングヘッドを設定。内径、倣い加 工からねじ切りまで対応し、高い加工品質を実
- 専用デバイスにより、迅速、かつ正確な防振バー のセッティングが可能

ラインナップ

ヘッド

- ISO-EcoTurn (ISO・エコ・ターン): 経済性に優れる
- MiniForce-Turn (ミニ・フォース・ターン): 低抵抗両面インサート
- TungBore-Mini (タング・ボア・ミニ): 穴あけ・旋削加工用
- TungThread (タング・スレッド): ねじ切り用
- AddForceCut (アド・フォース・カット): 内径溝入れ用

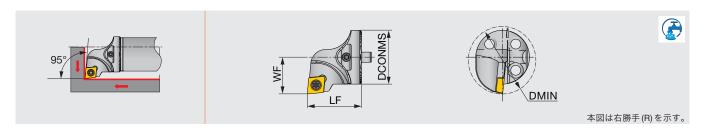
シャンク

- 鋼シャンク: L/D = 4, 7, 10 DCONMS = Ø16 - Ø60 mm - 超硬シャンク: L/D = 10 DCONMS = Ø16 - Ø20 mm

- PSC アダプタ: L/D = 2.5, 3, 5, 9

PSC サイズ = C4, C6

幅広いボーリングヘッドをラインナップ

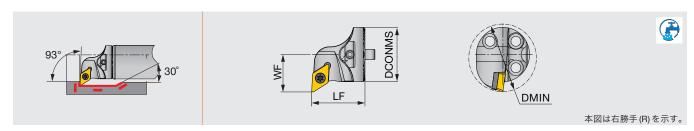


DREMEISTER

ヘッド

S-SCLCR/L-H

スクリューオン式交換式ボーリングヘッド 使用インサートポジ 7°,80° ひし形

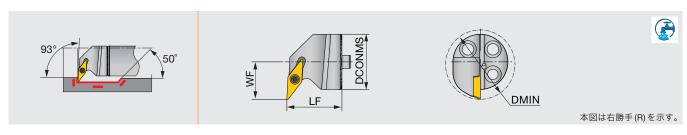


形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S16-SCLCR/L06-H	20	16	11	20	D/G16	CC**0602
S20-SCLCR/L09-H	25	20	13	20	D/G20	CC**09T3
S25-SCLCR/L09-H	32	25	17	22	D25	CC**09T3
S32-SCLCR/L09-H	40	30	22	32	D32	CC**09T3
S40-SCLCR/L12T-H	50	40	27	38	D40, D50, D60	CC**1204

(注) 勝手付きインサートの場合、右勝手のホルダ(SCLCR**)には左勝手のインサート(L)を、左勝手のホルダ(SCLCL**)には右勝手のインサート(R)を使用します。

S-SDUCR/L-H

スクリューオン式交換式ボーリングヘッド 使用インサートポジ 7°, 55° ひし形

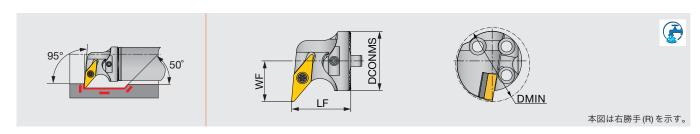


形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S16-SDUCR/L07-H	20	16	11	20	D/G16	DC**0702
S20-SDUCR/L11-H	25	20	13	20	D/G20	DC**11T3
S25-SDUCR/L11-H	32	25	17	20	D25	DC**11T3
S32-SDUCR/L11T-H	40	32	22	32	D32	DC**11T3
S40-SDUCR/L11T-H	50	40	27	32	D40, D50, D60	DC**11T3

(注) 勝手付きインサートの場合、右勝手のホルダ(SDUCR**)には左勝手のインサート (L) を、左勝手のホルダ(SDUCL**)には右勝手のインサート (R) を使用します。

S-SVUCR/L-H

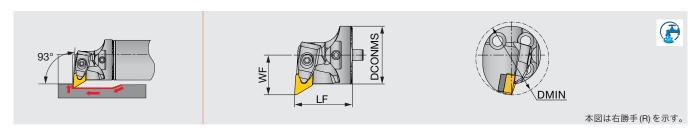
スクリューオン式交換式ボーリングヘッド 使用インサートポジ 7°,35°ひし形


形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S20-SVUCR/L11-H	27	20	16	20	D/G20	VC**1103
S25-SVUCR/L11-H	31	25	17	25	D25	VC**1103

(注)勝手付きインサートの場合、右勝手のホルダ(SVUCR**)には左勝手のインサート(L)を、左勝手のホルダ(SVUCL**)には右勝手のインサート(R)を使用します。

S-SVLCR/L-H

スクリューオン式交換式ボーリングヘッド 使用インサートポジ 7°,35° ひし形

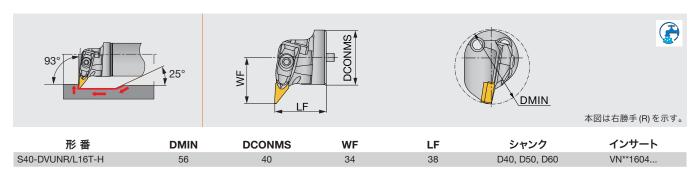


形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S32-SVLCR/L16T-H	40	32	22	32	D32	VC**1604
S40-SVLCR/L16T-H	50	40	27	32	D40, D50, D60	VC**1604

(注) 勝手付きインサートの場合、右勝手のホルダ(SVLCR**)には左勝手のインサート (L) を、左勝手のホルダ(SVLCL**)には右勝手のインサート (R) を使用します。

S-DDUNR/L-H

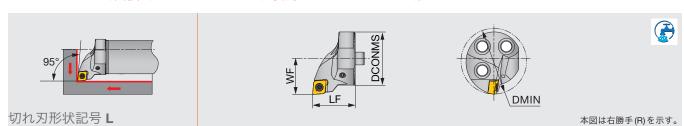
ダブルクランプ式交換式ボーリングヘッド 使用インサートネガ 55° ひし形



形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S32-DDUNR/L11T-H	40	32	22	32	D32	DN**1104
S40-DDUNR/L15T-H	50	40	27	32	D40, D50, D60	DN**1504/06

(注) 勝手付きインサートの場合、右勝手のホルダ (DDUNR**) には左勝手のインサート (L) を、左勝手のホルダ (DDUNL**) には右勝手のインサート (R) を使用します。

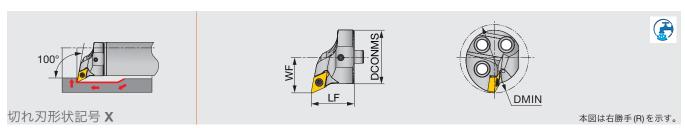
S-DVUNR/L-H


ダブルクランプ式交換式ボーリングヘッド 使用インサートネガ 35° ひし形

REMEISTER

MINIFTÜRN S-SCLXR/L-H

ー スクリューオン式交換式ボーリングヘッド、使用インサート CXMU 形

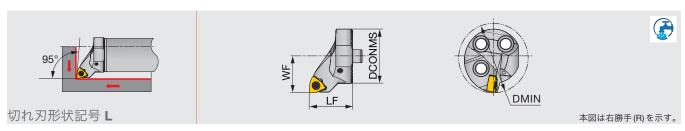


形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S25-SCLXR/L06-H	32	25	17	20	D25	CXMU
S32-SCLXR/L06-H	40	32	22	32	D32	CXMU
S40-SCLXR/L06-H	50	40	27	32	D40, D50, D60	CXMU

(注) 勝手付きインサートの場合、右勝手のホルダ(SCLXR**)には左勝手のインサート(L)を、左勝手のホルダ(SCLXL**)には右勝手のインサート(R)を使用します。

S-SDXXR/L-H

スクリューオン式交換式ボーリングヘッド、使用インサート DXG/MU 形



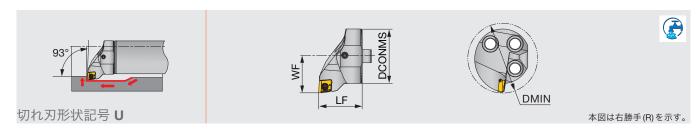
形番	DMIN	DCONMS	WF	LF	シャンク	インサート
S25-SDXXR/L07-H	32	25	17	20	D25	DXG/MU
S32-SDXXR/L07-H	40	32	22	32	D32	DXG/MU
S40-SDXXR/L07-H	50	40	27	32	D40, D50, D60	DXG/MU

(注) 勝手付きインサートの場合、右勝手のホルダ(SDXXR**)には左勝手のインサート(L)を、左勝手のホルダ(SDXXL**)には右勝手のインサート(R)を使用します。

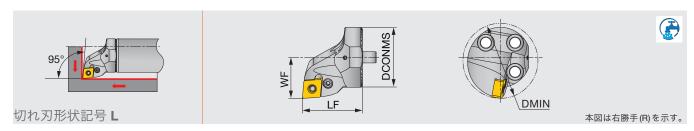
MINI**F**ŤÜRN S-SWLXR/L-H

スクリューオン式交換式ボーリングヘッド、使用インサート WXGU 形

形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S25-SWLXR/L04-H	32	25	17	20	D25	WXGU
S32-SWLXR/L04-H	40	32	22	32	D32	WXGU
S40-SWLXR/L04-H	50	40	27	32	D40, D50, D60	WXGU


(注) 勝手付きインサートの場合、右勝手のホルダ (SWLXR**) には左勝手のインサート (L) を、左勝手のホルダ (SWLXL**) には右勝手のインサート (R) を使用します。

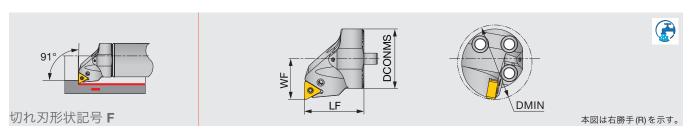
S-SXUOR05-H


スクリューオン式交換式ボーリングヘッド、使用インサート XOMU 形

形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S20-SXUOR05-H	25	20	13	20	D20	XOMU
S25-SXUOR05-H	32	25	17	20	D25	XOMU

ISOETURN S-PCLNR/L-H

レバーロック式交換式ボーリングヘッド、使用インサートネガ 80° ひし形

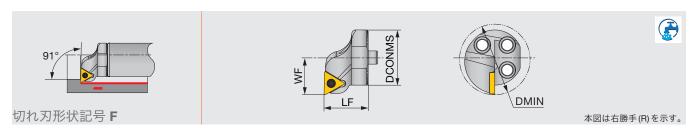


形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S32-PCLNR/L09-H	40	32	22	32	D32	CNMG0904
S40-PCLNR/L09-H	50	40	27	32	D40, D50, D60	CNMG0904

⁽注) 勝手付きインサートの場合、右勝手のホルダ (PCLNR**) には左勝手のインサート (L) を、左勝手のホルダ (PCLNL**) には右勝手のインサート (R) を使用します。

S-PTFNR/L-H

レバーロック式交換式ボーリングヘッド、使用インサートネガ 60° 正三角形

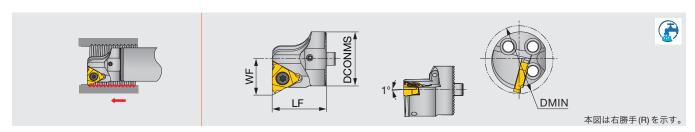

形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S32-PTFNR/L11-H	40	32	22	32	D32	TNMG1104
S40-PTFNR/L11-H	50	40	27	32	D40, D50, D60	TNMG1104

(注) 勝手付きインサートの場合、右勝手のホルダ(PTFNR**)には左勝手のインサート(L)を、左勝手のホルダ(PTFNL**)には右勝手のインサート(R)を使用します。

PREMEISTER

S-STFPR/L-H

スクリューオン式交換式ボーリングヘッド、使用インサートポジ 60° 正三角形

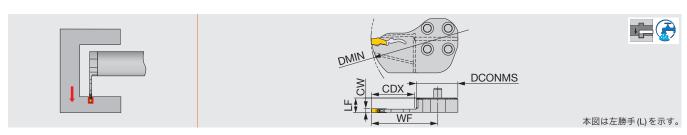

形番	DMIN	DCONMS	WF	LF	シャンク	インサート
S16-STFPR/L09-H	20	16	11	20	D16	TPMT0902
S16-STFPR/L11-H	20	16	11	20	D16	TPMT1102
S20-STFPR/L11-H	25	20	13	20	D20	TPMT1102
S25-STFPR/L11-H	32	25	17	20	D25	TPMT1102
S32-STFPR/L16-H	40	32	22	32	D32	TPMT16T3
S40-STFPR/L16-H	50	40	27	32	D40, D50, D60	TPMT16T3

⁽注) 勝手付きインサートの場合、右勝手のホルダ(STFPR**)には左勝手のインサート (L) を、左勝手のホルダ(STFPL**)には右勝手のインサート (R) を使用します。

S-SNR-H

TUNGTHREAD

スクリューオン式交換式ボーリングヘッド、ねじ切りインサート



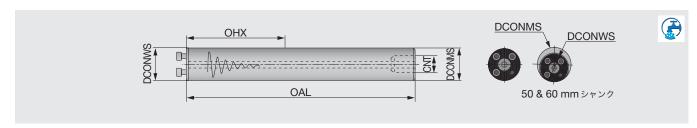
形 番	DMIN	DCONMS	WF	LF	シャンク	インサート
S20-SNR16-H	25	20	14	25	D20	16IR
S25-SNR16-H	32	25	17	25	D25	16IR
S32-SNR16-H	40	32	22	32	D32	16IR
S40-SNR16-H	50	40	27	32	D40, D50, D60	16IR

S-QSIR/L-H

BOREMEISTER

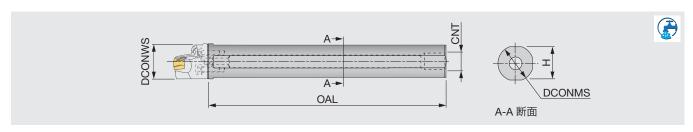
内径溝入れ用ヘッド

形 番	CW	CDX	DMIN	DCONMS	シートサイズ	LF	WF	シャンク
S25-QSIR/L2T26D550-H	2	26	55	25	2	8.5	40.1	D25
S25-QSIR/L3T26D550-H	3	26	55	25	3	9	40.1	D25
S32-QSIR/L3T32D700-H	3	32	70	32	3	11	49.6	D32
S32-QSIR/L4T32D700-H	4	32	70	32	4	11.5	49.6	D32


ヘッドが取付くシャンクは、BoreMeister(ボア・マイスター)のタンガロイレポート(TR517)をご参照ください。

シャンク

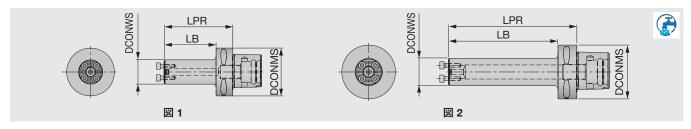
防振バー


旋削加工用交換式ヘッド対応防振バー 内部給油対応

形 番	シャンク材	DCONWS	DCONMS	OAL	OHX	CNT
D16-L156-7D-C	鋼	16	16	156.3	92	G1/8
G16-L204-10D-E	超硬	16	16	204.3	140	-
D20-L200-7D-C	鋼	20	20	200.3	120	G1/4
G20-L260-10D-E	超硬	20	20	260.3	180	-
D25-L255-7D-C	鋼	25	25	257.5	155	G1/4
D25-L330-10D-C	鋼	25	25	332.5	230	G1/4
D32-L320-7D-C	鋼	32	32	323	192	G3/8
D32-L416-10D-C	鋼	32	32	419	288	G3/8
D40-L408-7D-C	鋼	40	40	411	248	G1/2
D40-L528-10D-C	鋼	40	40	531	368	G1/2
D50-L518-7D-C	鋼	40	50	523	318	G1/2
D50-L668-10D-C	鋼	40	50	673	468	G1/2
D60-L628-7D-C	鋼	40	60	633	388	G3/4
D60-L808-10D-C	鋼	40	60	813	568	G3/4

D#4D-SH

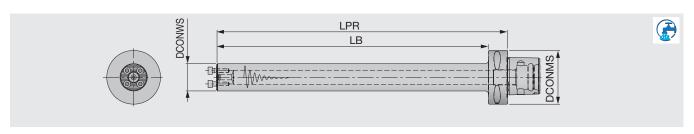
内径加工用鋼シャンク、内部給油対応


形 番	シャンク材	DCONWS	DCONMS	OAL	CNT	н
D16-L105-4D-SH	鋼	16	16	105	UNC-2B 3/8"-16	15
D20-L140-4D-SH	鋼	20	20	140	UNFC-2B 3/8"-24	18
D25-L200-4D-SH	鋼	25	25	200	UNF-2B 1/2"-20	23
D32-L218-4D-SH	鋼	32	32	218	UNF-2B 1/2"-20	29
D40-L283-4D-SH	鋼	40	40	283	UNF-2B 1/2"-20	36

BOREMEISTER

アダプタ

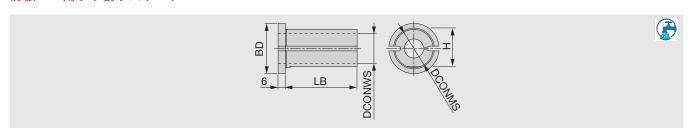
C#-SH-CHP / C#-SH-E-CHP


_____ PSC アダプタ (鋼、超硬)

形 番	シャンク材	DCONWS	DCONMS	LPR	LB	図
C4-SH-D16-2.5D-CHP	鋼	16	40	40	20	1
C4-SH-D20-2.5D-CHP	鋼	20	40	50	30	1
C4-SH-D25-2.5D-CHP	鋼	25	40	55	35	1
C4-SH-D32-2.5D-CHP	鋼	32	40	75	55	1
C4-SH-D40-3D-CHP	鋼	40	40	80	80	1
C6-SH-D20-5D-E-CHP	超硬	20	63	100	78	2
C6-SH-D25-5D-E-CHP	超硬	25	63	115	93	2
C6-SH-D32-5D-E-CHP	超硬	32	63	150	128	2
C6-SH-D40-5D-E-CHP	超硬	40	63	185	163	2

C6-9D-C

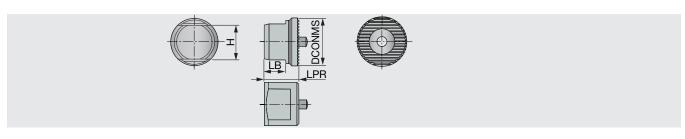
防振機構付き PSC アダプタ L/D = 9



形 番	シャンク材	DCONWS	DCONMS	LPR	LB	WT (kg)
C6-D25-L230-9D-C	鋼	25	63	230.5	200.1	1.65
C6-D32-L288-9D-C	鋼	32	63	288.5	259.5	2.73
C6-D40-L368-9D-C	鋼	40	63	368.5	339	4.45

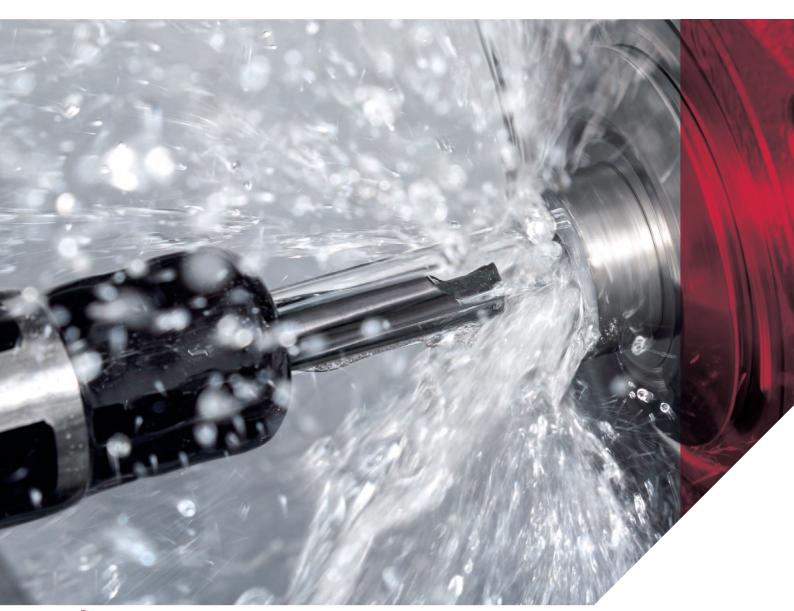
スリーブ

RSL スリーブ


防振バー用すり割りスリーブ

形番	DCONWS	DCONMS	BD	LB	Н
RSL-32-16-L66	16	32	42	60	31
RSL-32-20-L66	20	32	42	60	31
RSL-32-25-L66	25	32	42	60	31
RSL-40-16-L76	16	40	50	70	38.5
RSL-40-20-L76	20	40	50	70	38.5
RSL-40-25-L76	25	40	50	70	38.5

AVC-SET 芯高調整用治具


形 番	DCONMS	Н	LPR	LB	適用シャンク径
AVC-SET 16-25	20	15	14.5	8.9	16, 20, 25
AVC-SFT 32-60	29	16	17.5	11 43	32 40 50 60

内径旋削加工

高精度な 極小内径加工用ソリッド工具

ADD 最小加工径 Ø0.6 mm!高精度、高能率加工を実現

- 最新のクーラントスリーブは、4 つの穴から大 量のクーラントを刃先近傍へ直接供給。切りく ず排出性が飛躍的に向上し、安定した長寿命を 実現
- 新たに SH725 材種を設定。耐摩耗性と耐チッ ピング性を両立させ、より安定した長寿命を 実現
- 刃先交換式工具を拡充。3 次元ブレーカ付き インサートで切りくず処理性を大幅に改善
- 幅広い被削材の極小径内径加工に対応

ラインナップ

超鋼ソリッドバー

- 穴繰り、倣い、面取り、ねじ切りおよび溝入れ加工

スリーブ

- Ø4 mm、Ø7 mm 用共通スリーブ、内部給油専用スリーブ、コレットチャックスリーブ、4 つ穴スリーブ
- スリーブシャンク径: ø12 ø25.4 mm

材種

- SH725: 専用の新コーティング膜と高靭性母材の組合せにより 長寿命化を実現

ソリッドバー

TBTR07090015-D050

TBTR07140015-D050

TBTR07190015-D050

TBTR07240015-D050

TBTR07290015-D050

TBTR07340015-D050

TBTR07140015-D060

TBTR/L07210015-D060

TBTR07240015-D060

TBTR07290015-D060

TBTR07340015-D060

TBTR07410015-D060

TBTR07190015-D068

TBTR07240015-D068

TBTR07290015-D068

TBTR07340015-D070

TBTR07390015-D070

TBTR07440015-D070

TBTR07490015-D070

TBTR/L

内径・倣い・面取り加工用超硬ソリッドバー

•

•

•

5

5

5

5

5

5

6

6

6

6

6

6

6.8

6.8

7

7

7

7

7

7

7

7

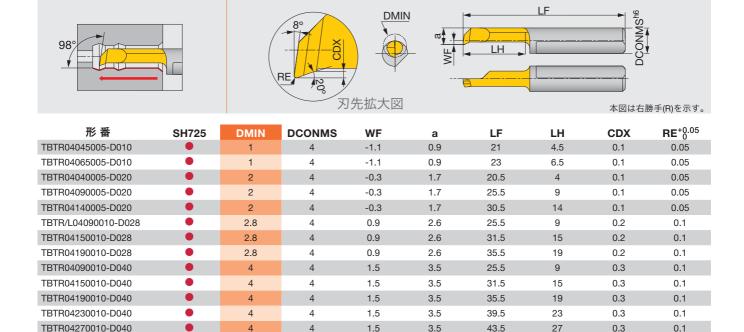
7

7

7

7

7


7

7

7

7

7

0.9

0.9

0.9

0.9

0.9

0.9

1.8

1.8

1.8

1.8

1.8

1.8

2.8

2.8

2.8

2.8

2.8

2.8

25

30

35

40

45

50

30

37

40

45

50

57

40

45

50

60

4.4

4.4

4.4

4.4

44

44

5.3

5.3

5.3

5.3

6.3

6.3

6.3

9

14

19

24

29

34

14

21

24

29

34

41

19

24

29

34

39

44

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.6

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

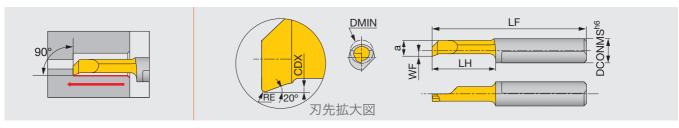
0.15

0.15

0.15

0.15

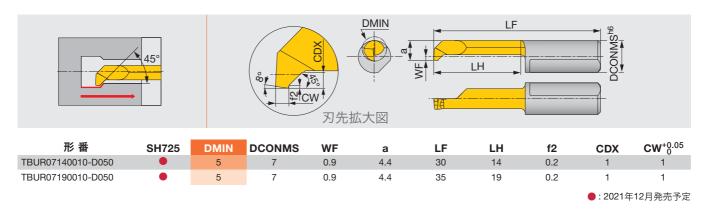
0.15


0.15

●: 2021年12月発売予定

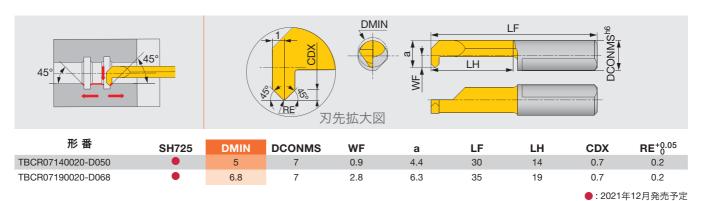
TBPR

内径・面取り加工用超硬ソリッドバー



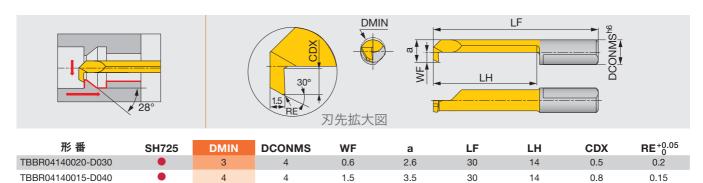
形 番	SH725	DMIN	DCONMS	WF	а	LF	LH	CDX	RE+0.05
TBPR04090010-D028	•	2.8	4	0.9	2.6	25.5	9	0.2	0.1
TBPR04150010-D040		4	4	1.5	3.5	31.5	15	0.3	0.1
TBPR07140015-D050	•	5	7	0.9	4.4	30	14	0.5	0.15
TBPR07190015-D050		5	7	0.9	4.4	35	19	0.5	0.15

●: 2021年12月発売予定


TBUR

内径引き・面取り加工用超硬ソリッドバー

TBCR


内径・45°面取り加工用超硬ソリッドバー

TBBR

内径引き加工用超硬ソリッドバー

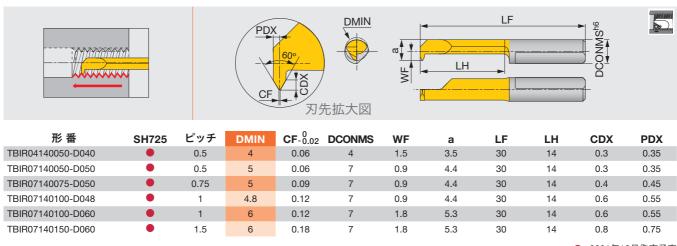
0.9

4.4

35

19

7

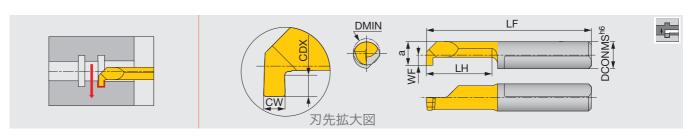

●: 2021年12月発売予定

0.2

TBIR

TBBR07190020-D050

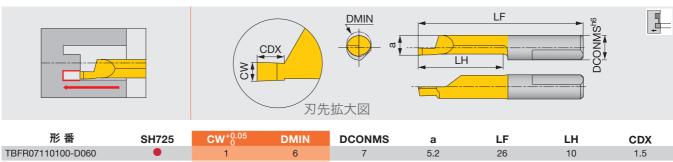
内径ねじ切り加工用超硬ソリッドバー



●: 2021年12月発売予定

TBGR

内径溝入れ加工用超硬ソリッドバー


形 番	SH725	CW ^{+0.05}	DMIN	DCONMS	WF	а	LF	LH	CDX
TBGR04100050-D020	•	0.5	2	4	-0.2	1.8	26	10	0.4
TBGR04090100-D040		1	4	4	1.5	3.5	25.5	9	0.8
TBGR04150100-D040	•	1	4	4	1.5	3.5	31.5	15	0.8
TBGR07090200-D050		2	5	7	0.9	4.4	25	9	1
TBGR07090100-D060	•	1	6	7	1.8	5.3	25	9	1.8
TBGR07140100-D060	•	1	6	7	1.8	5.3	30	14	1.8
TBGR07090150-D060	•	1.5	6	7	1.8	5.3	25	9	1.8
TBGR07090200-D060	•	2	6	7	1.8	5.3	25	9	1.8
TBGR07140200-D060	•	2	6	7	1.8	5.3	30	14	1.8
TBGR07090100-D068	•	1	6.8	7	2.7	6.2	25	9	2.5
TBGR07090150-D068	•	1.5	6.8	7	2.7	6.2	25	9	2.5
TBGR07140150-D068	•	1.5	6.8	7	2.7	6.2	30	14	2.5
TBGR07090200-D068	•	2	6.8	7	2.7	6.2	25	9	2.5
TBGR07140200-D068	•	2	6.8	7	2.7	6.2	30	14	2.5
TBGR07210200-D068	•	2	6.8	7	2.7	6.2	37	21	2.5
TBGR07290200-D068	•	2	6.8	7	2.7	6.2	45	29	2.5

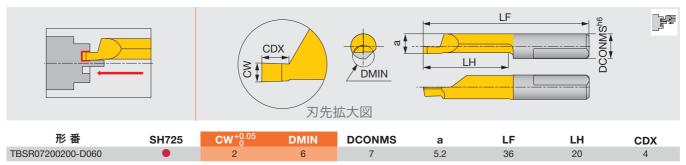
^{*} コーナ半径は 0.1 mm 以下。

●: 2021年12月発売予定

TBFR

内径端面溝入れ加工用超硬ソリッドバー

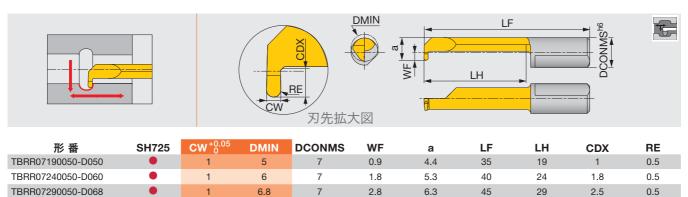
形 番	SH725	CW ^{+0.05}	DMIN	DCONMS	а	LF	LH	CDX
TBFR07110100-D060	•	1	6	7	5.2	26	10	1.5
TBFR07110200-D060		2	6	7	5.2	26	10	3
TBFR07110100-D080	•	1	8	7	5.9	27	11	1.5
TBFR07110250-D080		2.5	8	7	5.9	27	11	3.5
TBFR07300300-D080	•	3	8	7	5.9	46	30	3.5
TBFR07200250-D150	•	2.5	15	7	5.9	36	20	20
TBFR07200300-D150	•	3	15	7	5.9	36	20	20
TBFR07300300-D150		3	15	7	5.9	46	30	30


^{*} コーナ半径は 0.1 mm 以下。

●: 2021年12月発売予定

TBSR

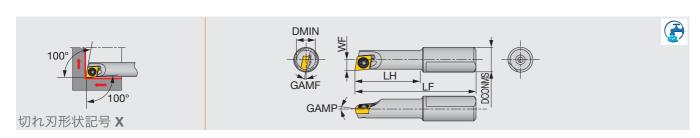
端面溝入れ(シャフト加工)用超硬ソリッドバー



^{*} コーナ半径は 0.1mm 以下。

●: 2021年12月発売予定

TBRR

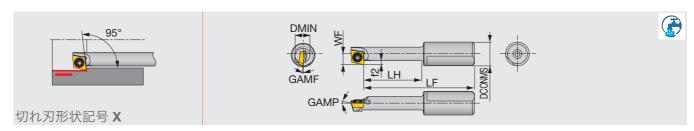

内径・倣い加工用超硬ソリッドバー

●: 2021年12月発売予定

A/E-SEXPR

スクリューオン式内径用バイト、使用インサートポジ11°、75°ひし形

形 番	シャンク材	DMIN	DCONMS	WF	LF	LH	GAMP	GAMF	RE**	インサート	トルク*
A07050-SEXPR03-3	鋼	5	7	2.5	31	15	0°	-13°	0.2	EPGT03X1	0.6
A07060-SEXPR04-3	鋼	6	7	3.1	34	18	0°	-12°	0.2	EPGT0401	0.6
E07050-SEXPR03-4	超硬	5	7	2.5	37	20	0°	-13°	0.2	EPGT03X1	0.6
E07050-SEXPR03-5	超硬	5	7	2.5	42	25	0°	-13°	0.2	EPGT03X1	0.6
E07060-SEXPR04-5	超硬	6	7	3.1	46	30	0°	-12°	0.2	EPGT0401	0.6

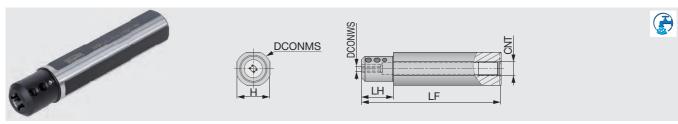

^{*}トルク:推奨締付けトルク (N·m)

^{**}RE:基準コーナ

A/E-SEZPR

スクリューオン式内径用バイト、使用インサートポジ11°、75°ひし形

形 番	シャンク材	DMIN	DCONMS	WF	LF	LH	f2	GAMP	GAMF	RE **	インサート	トルク*
A07055-SEZPR03-3	鋼	5.5	7	3.2	32.5	16.5	1.2	0°	-8°	0.2	EPGT03X1	0.6
E07055-SEZPR03-5	超硬	5.5	7	3.2	44.7	27.5	1.2	0°	-8°	0.2	EPGT03X1	0.6


*トルク:推奨締付けトルク (N·m)

**RE:基準コーナ

スリーブ

JBBS-4N

4つ穴クーラント搭載内部給油スリーブ

形 番	DCONMS	DCONWS	LF	LH	н	CNT
JBBS12-4-L80C-4N	12	4	80	10	10.3	Rc1/16
JBBS127-4-L80C-4N	12.7	4	80	10	11.6	Rc1/16
JBBS14-4-L80C-4N	14	4	80	10	12	Rc1/8
JBBS159-4-L100C-4N	15.875	4	100	10	14.58	Rc1/8
JBBS159-7-L100C-4N	15.875	7	100	10	14.58	Rc1/8
JBBS16-4-L100C-4N	16	4	100	10	15	Rc1/8
JBBS16-7-L100C-4N	16	7	100	10	15	Rc1/8
JBBS19-4-L100C-4N	19.05	4	100	20	17.2	Rc1/8
JBBS19-7-L100C-4N	19.05	7	100	20	17.2	Rc1/8
JBBS20-4-L100C-4N	20	4	100	20	18	Rc1/8
JBBS20-7-L100C-4N	20	7	100	20	18	Rc1/8
JBBS22-4-L100C-4N	22	4	100	20	20	Rc1/8
JBBS22-7-L100C-4N	22	7	100	20	20	Rc1/8
JBBS25-4-L100C-4N	25	4	100	23	23	Rc1/8
JBBS25-7-L100C-4N	25	7	100	23	23	Rc1/8
JBBS254-4-L100C-4N	25.4	4	100	23	23.4	Rc1/8
JBBS254-7-L100C-4N	25.4	7	100	23	23.4	Rc1/8

その他の スリーブ情報 はこちらから。

MINIFTÜRN/WAYYJOIN

内径旋削加工

両面仕様ポジ CBN インサートを設定 焼き入れ鋼加工に、高い信頼性と経済性、 生産性を追加

ADD 革新的なろう付け形状を持つ 『WavyJoint (ウェイビー・ジョイント)』仕様 ポジインサート同等の低抵抗と安定性を発揮

- 独創的なインサート形状とダブテール機構を備 えたホルダにより、安定した加工を実現
- 汎用材種の『BXA20』と連続加工に適した 『BXA10』材種を設定。焼入れ鋼の連続から断 続加工において、圧倒的な信頼性と長寿命を実 現
- 切りくず処理性に優れた **HP チップブレーカ**イ ンサートも設定。切込み 0.2 mm 以下の領域で 抜群の切りくず処理性能を発揮
- 6 コーナを使用できる両面ポジインサート仕様。 コーナ単価が低く抑えられ、工具費低減に貢献

ラインナップ

インサート

- 6QS-WXGQ...

RE = 0.2 - 0.8 mm

- 6QS-WXGU**-HP

RE = 0.4, 0.8 mm

チップブレーカ

- HP形: 焼入れ鋼の仕上げ加工に最適。びびりを抑制し高い加工面 品位を実現

ツールホルダ

- A-SWLXR/L...
- E-SWLXR/L...

DCONMS = Ø10 - Ø20 mm

材種

- BXA10: 高い耐摩耗性で、特に焼入れ鋼の連続加工において圧倒的な 信頼性と長寿命を獲得
- BXA20: 低速~中切削速度領域において、焼入れ鋼の連続から断続 加工でカバーする汎用性に優れた材種

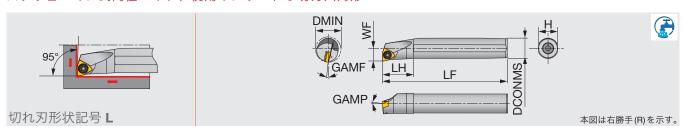
上記新シリーズ以外の MiniForceTurn の 情報はこちらから。

上記新シリーズ以外の CBN インサートの 情報はこちらから。

MINIFTÜRN/WAYYJOINT

■ CBNインサート ポジティブタイプ

- ●:連続加工 **©**:弱断続加工
- 母:強断続加工


	P M K N S	鋼 ステンレス 鋳鉄 非鉄金属 難削材 高硬度材	•	•c					RE IC S												
インサート 形状		形番	BXA10	BXA20					コーナ数		l法 RE	(mm	n) S	D1	標準		J先1 L I	LC H	1	11	ブレーカ
6QS-WXGQ	6QS	-WXGQ040302SPR	_	•					6			6.35				0		+		+	-
		S-WXGQ0403 02SPL	•	•					6			6.35				0				\top	7
	6QS	-WXGQ040304SPR	•	•					6	1.8	0.4	6.35	3.18	2.7		0				T	\neg
	6QS	-WXGQ0403 04SPL	•	•					6	1.8	0.4	6.35	3.18	2.7		0				T	٦
	6QS	S-WXGQ040308SPR	•	•					6	1.7	8.0	6.35	3.18	2.7		0				1	
	6QS	-WXGQ0403 08SPL	•	•					6	1.7	8.0	6.35	3.18	2.7		0					
6QS-WXGU**-HP	6QS	S-WXGU040304R-HP	•	•					6	1.8	0.4	6.35	3.18	2.7							0
	6QS	-WXGU040304 L-HP	•	•					6	1.8	0.4	6.35	3.18	2.7							0
	6QS	-WXGU040308R-HP	•	•					6	1.7	0.8	6.35	3.18	2.7							0
	6QS	-WXGU040308L-HP	•	•					6	1.7	0.8	6.35	3.18	2.7							0

●: 2021 年 12 月発売予定 ●: 設定アイテム

ツールホルダ

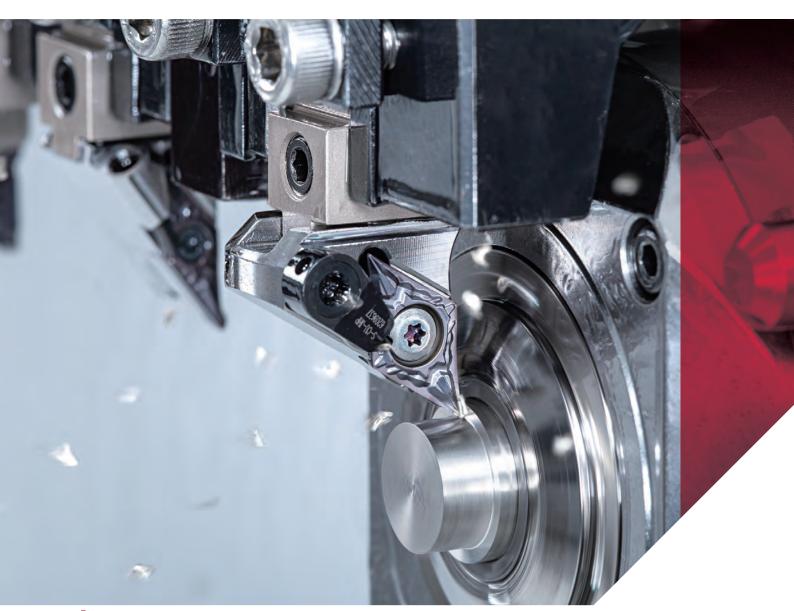
A/E-SWLXR/L

スクリューオン式内径バイト、使用インサート 6 切刃六角形

形 番	シャンク材	DMIN	DCONMS	WF	LF	LH	н	GAMP	GAMF	RE**	インサート	トルク*
A10K-SWLXR/L04-D120	鋼	12	10	6	125	20	9	-10	-16	0.4	WXGU0403**L/R ()	0.9
A12M-SWLXR/L04-D140	鋼	14	12	7	150	24	11	-10	-14	0.4	WXGU0403**L/R ()	0.9
A16Q-SWLXR/L04-D180	鋼	18	16	9	180	32	15	-10	-11	0.4	WXGU0403**L/R ()	0.9
A20R-SWLXR/L04-D220	鋼	22	20	11	200	36	18	-10	-10	0.4	WXGU0403**L/R ()	0.9
E10M-SWLXR/L04-D120	超硬	12	10	6	150	25	9	-10	-16	0.4	WXGU0403**L/R ()	0.9
E12Q-SWLXR/L04-D140	超硬	14	12	7	180	27	11	-10	-14	0.4	WXGU0403**L/R ()	0.9
E16R-SWLXR/L04-D180	超硬	18	16	9	200	32	15	-10	-11	0.4	WXGU0403**L/R ()	0.9
E20S-SWLXR/L04-D220	超硬	22	20	11	250	36	18	-10	-10	0.4	WXGU0403**L/R ()	0.9

*トルク: 推奨締付けトルク (N·m) **RE: 基準コーナ (注) 右勝手のホルダ (R) には左勝手のインサート (L) を使用。左勝手のホルダ (L) には右勝手のインサート (R) を使用。

■■標準切削条件


ISO	材種	刃先仕様	加工領域	切削速度 <i>V</i> c (m/min)	切込み <i>a</i> p (mm)	送り f (mm/rev)
		末尾記号なし	連続	100 - 230	0.05 - 0.5	0.03 - 0.3
	BXAIO	水尾心うなび	弱断続	100 - 230	0.05 - 0.5	0.03 - 0.2
H		-HP	連続	100 - 230	0.05 - 0.2	0.03 - 0.2
		末尾記号なし	連続	60 - 180	0.05 - 0.5	0.03 - 0.3
	OSAXS	水尾心うなび	断続	60 - 180	0.05 - 0.5	0.03 - 0.2
		-HP	連続	60 - 180	0.05 - 0.2	0.03 - 0.2

外径旋削加工

革新的なヘッド交換式自動盤用工具

ADD 旋削加工にさらなる多様性と高い 生産性を実現

- 加工能率はそのままで、モジュール化により ダウンタイムを大幅に削減。外径旋削、溝入 れからねじ切り加工まで幅広く対応
- 段取り替えによるダウンタイムを大幅に削減 し、機械効率を最大化。工具配置の変更も、 ヘッド交換だけで瞬時に完了
- 独自のカップリング機構により、確実なヘッド クランプと、優れた刃先位置精度を両立
- ヘッド脱着時の繰り返し位置精度が5 µm以
- 内部給油仕様もラインナップ。クーラントを的 確に刃先へ供給でき、切りくず排出性とイン サートの寿命延長に貢献
- Y 軸加工用ヘッドの利用で、切りくずが確実 に落下し、巻き付きなどのトラブルを解消
- 様々なヘッドを同一シャンクに搭載可能

ラインナップ

ヘッド

- J-Series (J シリーズ): ISO インサート用ヘッド
- MiniForce-Turn (ミニ・フォース・ターン): 低抵抗両面インサート
- TetraMiniCut (テトラ・ミニ・カット): 溝入れ・ねじ切り加工用
- J-Series (Jシリーズ)、MiniForce-Turn (ミニ・フォース・ターン)、 TetraMiniCut (テトラ・ミニ・カット): Y 軸用ヘッド

シャンク

- QC-1212...
- QC-1212-CHP (内部給油型)

上記新シリーズ 以外の情報は こちらから。

設定一覧

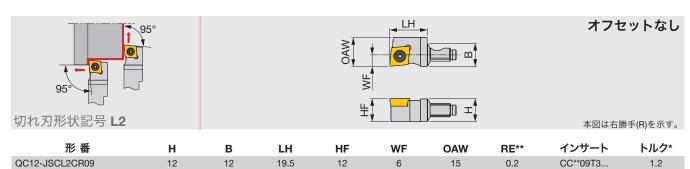
シャンク (12 mm 角)

全長 * (mm)	クーラント穴なし	クーラント穴あり	ページ
85	0	0	77
120	0	0	77

^{*} ヘッド装着時

ヘッド

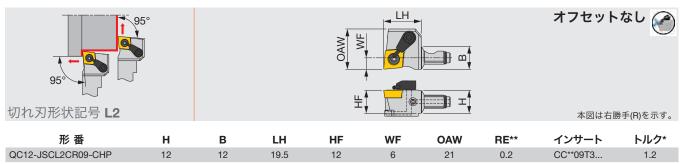
名称	インサート形状	クーラント穴なし	クーラント穴あり	ページ
	CC**09T3	0	0	67 72 73
	DC**0702	0	0	67 68
J-SERIES J>y-x	DC**11T3	0	0	67 68 73
	VB**1103	0	0	68
	J10ER	0	-	69
	WXGU0403**L	0	0	69 74
MINIFTURN EL. 74-X. 9-Y	DXGU0703**L	0	0	70 74 75
	VXGU09T2**L	0	0	70 71
TETRAMEUT テトラ・ミニ・カット	TC*18R/L	0	0	71 72 75 76



ヘッド

QC12-JSCL2CR

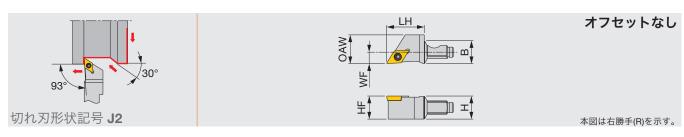
スクリューオン式ヘッド、アプローチ角95°、使用インサート:ポジ80°ひし形



^{*} トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSCL2CR-CHP

高圧クーラントノズル付スクリューオン式ヘッド、アプローチ角95°、使用インサート:ポジ80°ひし形



内部給油式ヘッド * トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSDJ2CR

スクリューオン式ヘッド、アプローチ角93°、使用インサート:ポジ55°ひし形

形 番	н	В	LH	HF	WF	OAW	RE**	インサート	トルク*
QC12-JSDJ2CR07	12	12	19.5	12	6	15	0.2	DC**0702	1.2
QC12-JSDJ2CR11	12	12	19.5	12	6	15	0.2	DC**11T3	1.2

^{*}トルク:推奨締付けトルク (N·m)


^{**}RE: 基準コーナ

QC12-JSDJ2CR-CHP

高圧クーラントノズル付スクリューオン式ヘッド、アプローチ角93°、使用インサート:ポジ55°ひし形

12

6

21

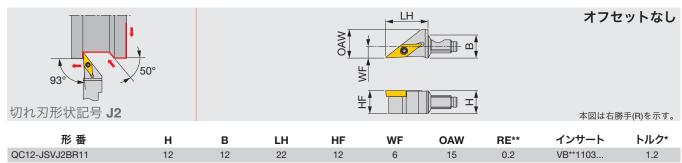
0.2

QC12-JSDJ2CR11-CHP

内部給油式ヘッド * トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSVJ2BR

J-SERIES

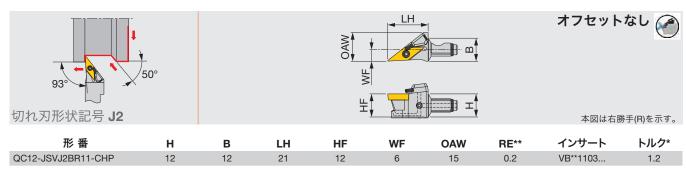

1.2

DC**11T3...

スクリューオン式ヘッド、アプローチ角93°、使用インサート:ポジ35°ひし形

12

19.5

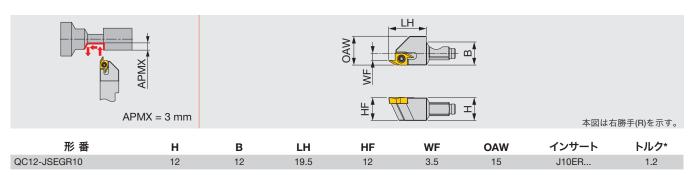


^{*} トルク: 推奨締付けトルク (N·m) **RE: 基準コーナ

QC12-JSVJ2BR-CHP

高圧クーラントノズル付スクリューオン式ヘッド、アプローチ角93°、使用インサート:ポジ35°ひし形

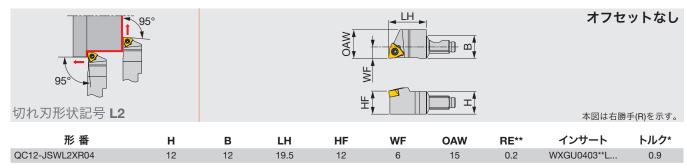
内部給油式ヘッド


^{*} トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSEGR

J-SERIES

スクリューオン式ヘッド、後挽き用

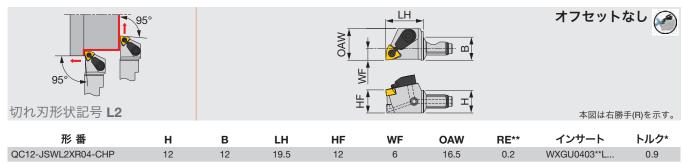


^{*}トルク:推奨締付けトルク (N·m)

QC12-JSWL2XR

MINIFTÜRN

スクリューオン式ヘッド、アプローチ角95°、使用インサート:WXGU形



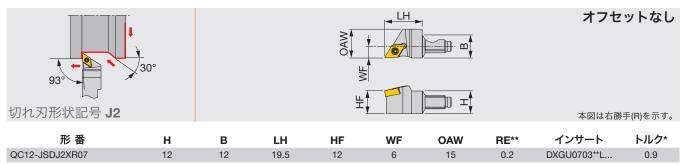
右勝手のホルダ (R) には左勝手のインサート (L) を使用。

QC12-JSWL2XR-CHP

高圧クーラントノズル付スクリューオン式ヘッド、アプローチ角95°、使用インサート:WXGU形

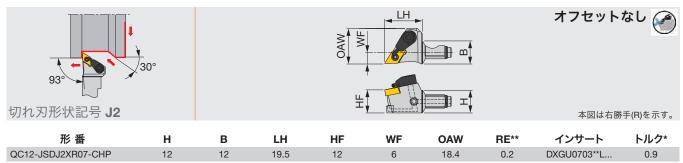
右勝手のホルダ (R) には左勝手のインサート (L) を使用。

内部給油式ヘッド * トルク: 推奨締付けトルク (N·m) **RE: 基準コーナ


^{*} トルク: 推奨締付けトルク (N·m) **RE: 基準コーナ

QC12-JSDJ2XR

スクリューオン式ヘッド、アプローチ角93°、使用インサート:DXGU形



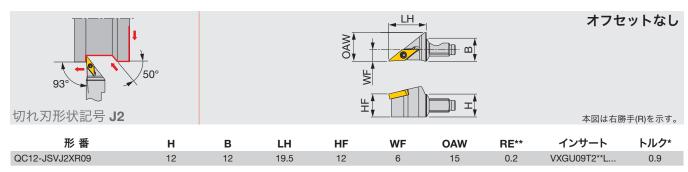
右勝手のホルダ (R) には左勝手のインサート (L) を使用。 *トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSDJ2XR-CHP

高圧クーラントノズル付スクリューオン式ヘッド、アプローチ角93°、使用インサート:DXGU形

右勝手のホルダ (R) には左勝手のインサート (L) を使用。

内部給油式ヘッド

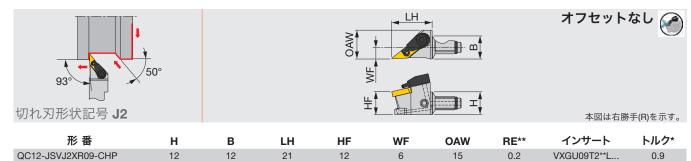

トルク:推奨締付けトルク (N·m)

**RE: 基準コーナ

QC12-JSVJ2XR

スクリューオン式ヘッド、アプローチ角93°、使用インサート:VXGU形

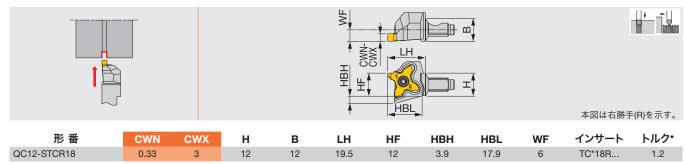
右勝手のホルダ (R) には左勝手のインサート (L) を使用。


* トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSVJ2XR-CHP

高圧クーラントノズル付スクリューオン式ヘッド、アプローチ角93°、使用インサート:VXGU形

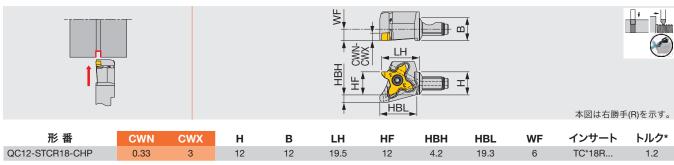
右勝手のホルダ (R) には左勝手のインサート (L) を使用。


内部給油式ヘッド *トルク:推奨締付けトルク (N·m)

**RE:基準コーナ

QC12-STCR

外径溝入れ・ねじ切りヘッド


右勝手のホルダ (R) には、右勝手のインサート (R) を使用。

* トルク:推奨締付けトルク (N·m)

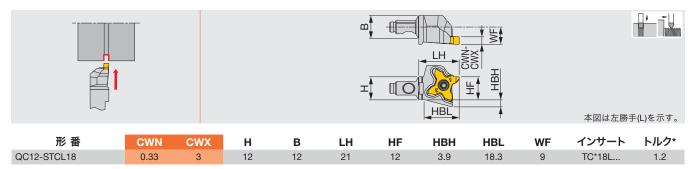
QC12-STCR-CHP

tetra**m**cüt

高圧クーラント対応外径溝入れ・ねじ切りヘッド

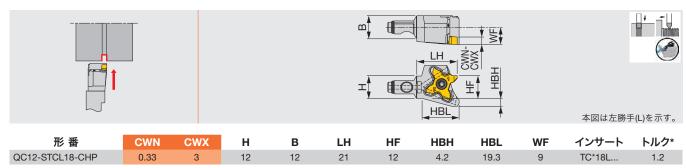
右勝手のホルダ (R) には、右勝手のインサート (R) を使用。

内部給油式ヘッド *トルク:推奨締付けトルク (N·m)


TC*18R...

QC12-STCL

外径溝入れ・ねじ切りヘッド



左勝手のホルダ (L) には、左勝手のインサート (L) を使用。

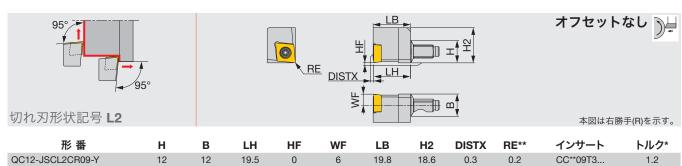
QC12-STCL-CHP

高圧クーラント対応外径溝入れ・ねじ切りヘッド

左勝手のホルダ (L) には、左勝手のインサート (L) を使用。

内部給油式ヘッド

^{*} トルク:推奨締付けトルク (N·m)



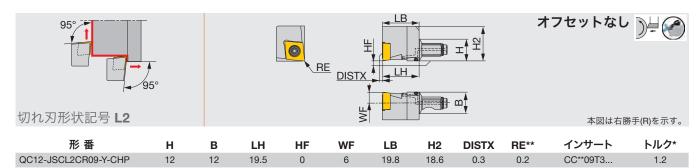
TC*18L...

QC12-JSCL2CR-Y

Y軸加工用スクリューオン式ヘッド、アプローチ角95°、使用インサート:ポジ80°ひし形

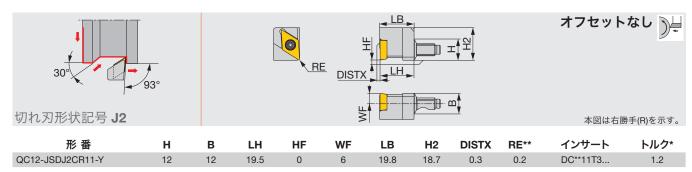
^{*}トルク:推奨締付けトルク (N·m)

^{*} トルク:推奨締付けトルク (N·m)


^{**}RE: 基準コーナ

QC12-JSCL2CR-Y-CHP

高圧クーラント対応Y軸加工用スクリューオン式ヘッド、アプローチ角95°、使用インサート:ポジ80°ひし形

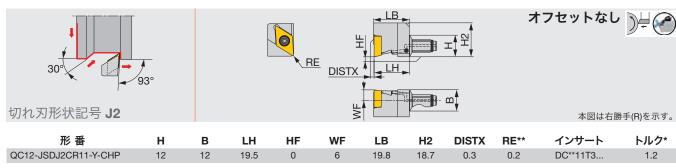


内部給油式ヘッド

* トルク:推奨締付けトルク (N·m) **RE:基準コーナ

J-SERIES QC12-JSDJ2CR-Y

Y軸加工用スクリューオン式ヘッド、アプローチ角93°、使用インサート:ポジ55°ひし形

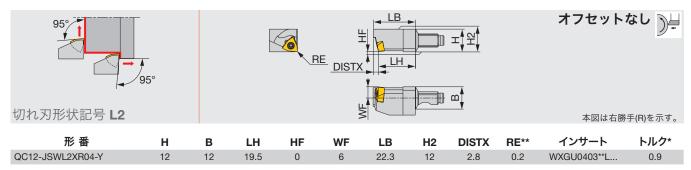

^{*} トルク:推奨締付けトルク (N·m)

**RE: 基準コーナ

QC12-JSDJ2CR-Y-CHP

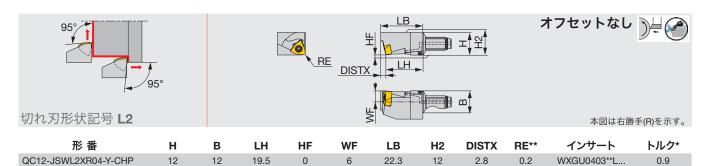
高圧クーラント対応Y軸加工用スクリューオン式ヘッド、アプローチ角93°、使用インサート:ポジ55°ひし形

内部給油式ヘッド


* トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSWL2XR-Y

Y軸加工用スクリューオン式ヘッド、アプローチ角95°、使用インサート:WXGU形

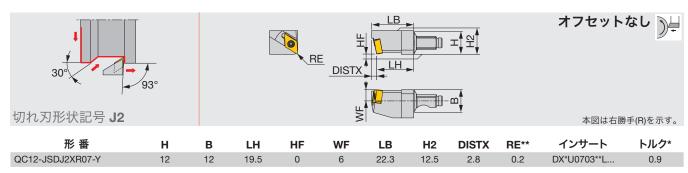


右勝手のホルダ (R) には左勝手のインサート (L) を使用。 *トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSWL2XR-Y-CHP

高圧クーラント対応Y軸加工用スクリューオン式ヘッド、アプローチ角95°、使用インサート:WXGU形

右勝手のホルダ (R) には左勝手のインサート (L) を使用。

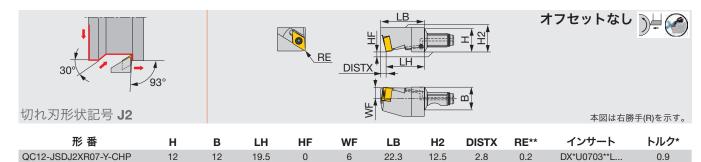

内部給油式ヘッド

* トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSDJ2XR-Y

Y軸加工用スクリューオン式ヘッド、アプローチ角93°、使用インサート:DX*U形

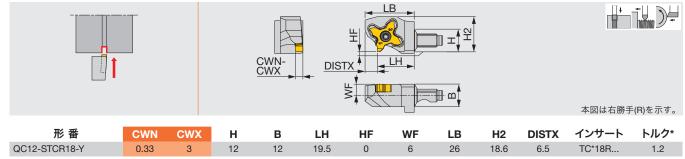
右勝手のホルダ (R) には左勝手のインサート (L) を使用。


* トルク:推奨締付けトルク (N·m) **RE:基準コーナ

QC12-JSDJ2XR-Y-CHP

高圧クーラント対応Y軸加工用スクリューオン式ヘッド、アプローチ角93°、使用インサート:DX*U形

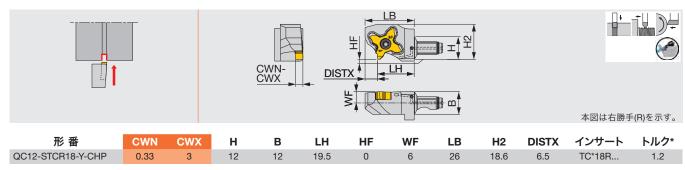
右勝手のホルダ (R) には左勝手のインサート (L) を使用。


内部給油式ヘッド *トルク:推奨締付けトルク (N·m)

**RE:基準コーナ

QC12-STCR-Y

Y軸加工用外径溝入れ・ねじ切りヘッド



右勝手のホルダ (R) には、右勝手のインサート (R) を使用。

QC12-STCR-Y-CHP

TETRA

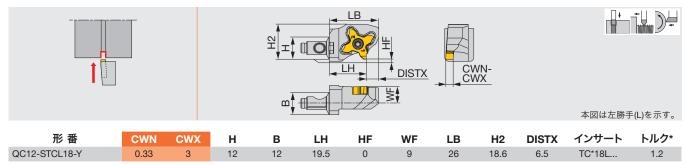
高圧クーラント対応Y軸加工用外径溝入れ・ねじ切りヘッド

右勝手のホルダ (R) には、右勝手のインサート (R) を使用。

内部給油式ヘッド

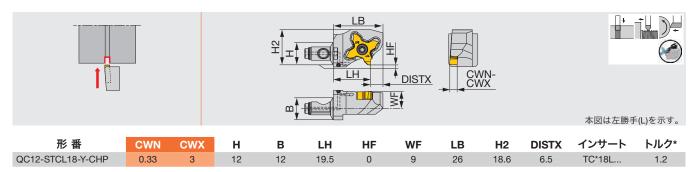
* トルク:推奨締付けトルク (N·m)

TC*18R...


^{*} トルク:推奨締付けトルク (N·m)

QC12-STCL-Y

Y軸加工用外径溝入れ・ねじ切りヘッド

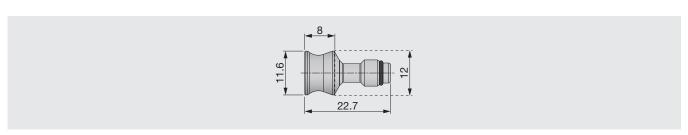


左勝手のホルダ (L) には、左勝手のインサート (L) を使用。

QC12-STCL-Y-CHP

高圧クーラント対応Y軸加工用外径溝入れ・ねじ切りヘッド

左勝手のホルダ (L) には、左勝手のインサート (L) を使用。 内部給油式ヘッド *トルク:推奨締付けトルク (N·m)


左勝手

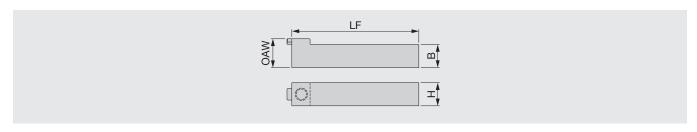
TC*18L...

QC12-STOPPER

シャンク用プラグ

形番

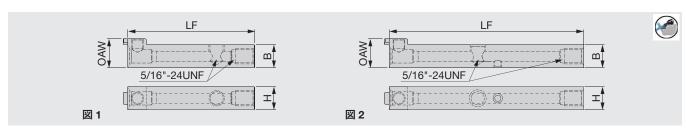
QC12-STOPPER


^{*} トルク:推奨締付けトルク (N·m)

シャンク

QC-1212

専用シャンク



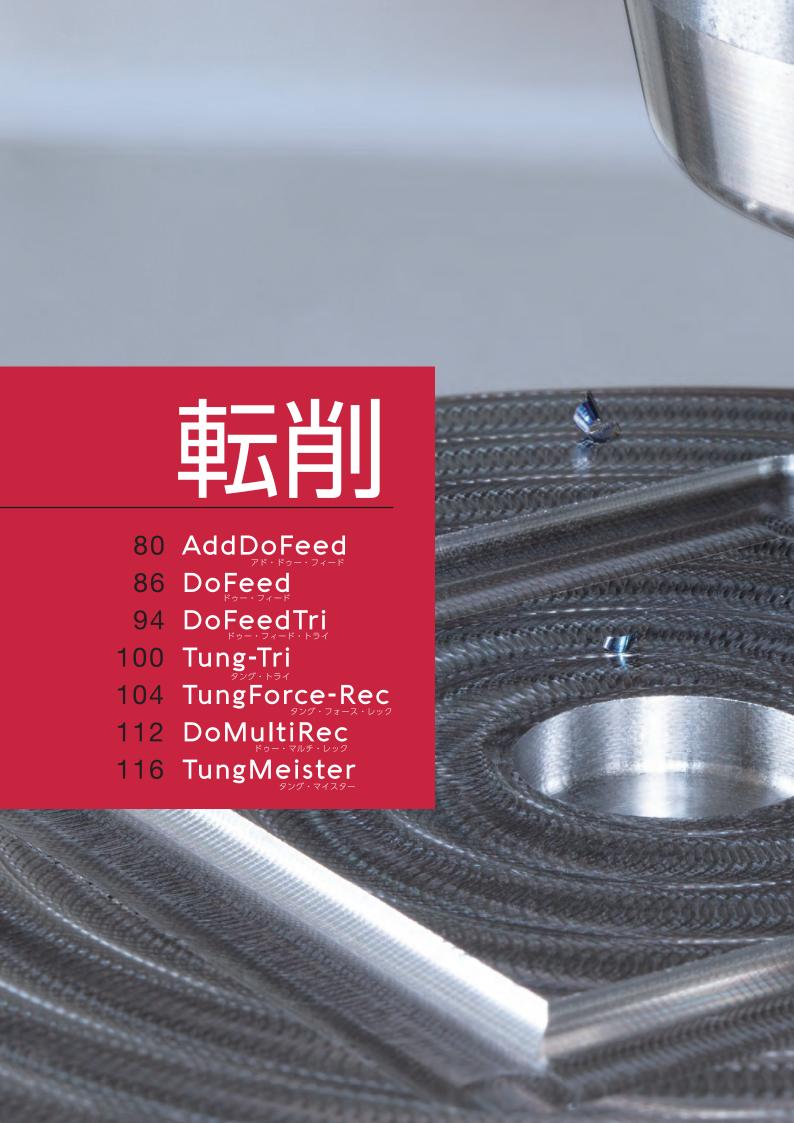
形 番	Н	В	LF	OAW	トルク*
QC-1212F	12	12	65	15	3
QC-1212X	12	12	100	15	3

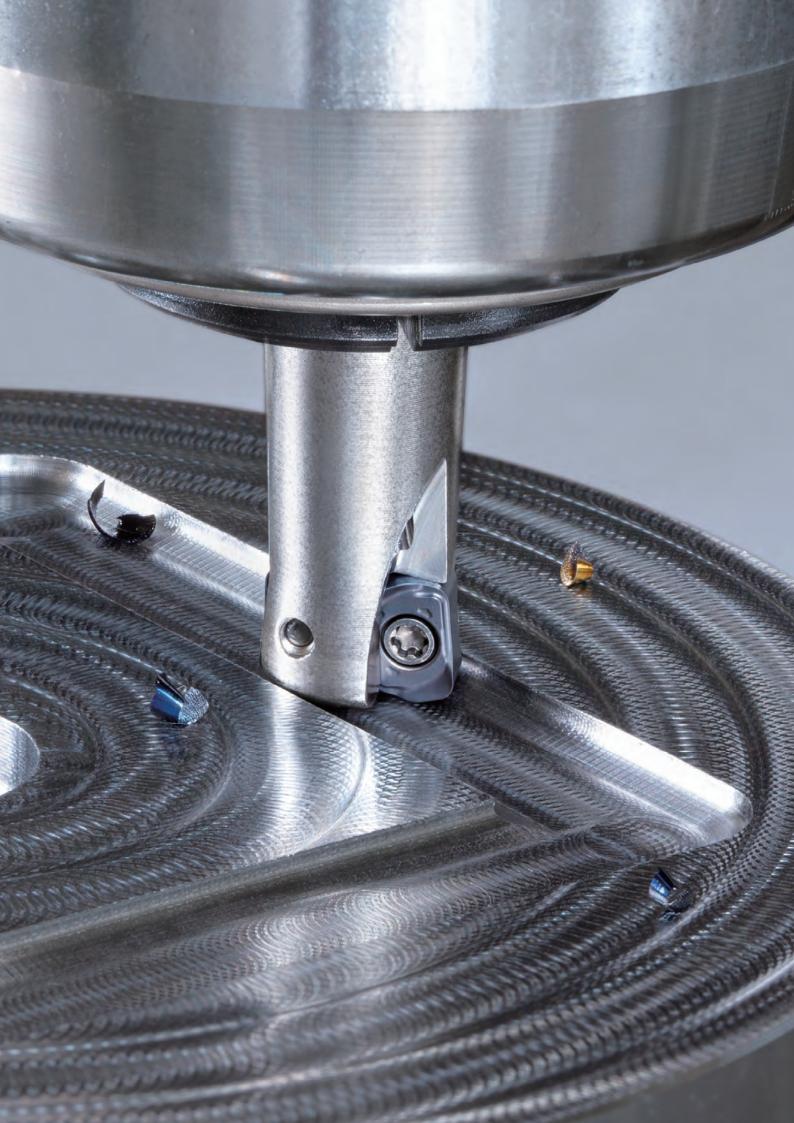
^{*}トルク:推奨締付けトルク (N·m)

QC-1212-CHP

高圧クーラント対応、専用シャンク

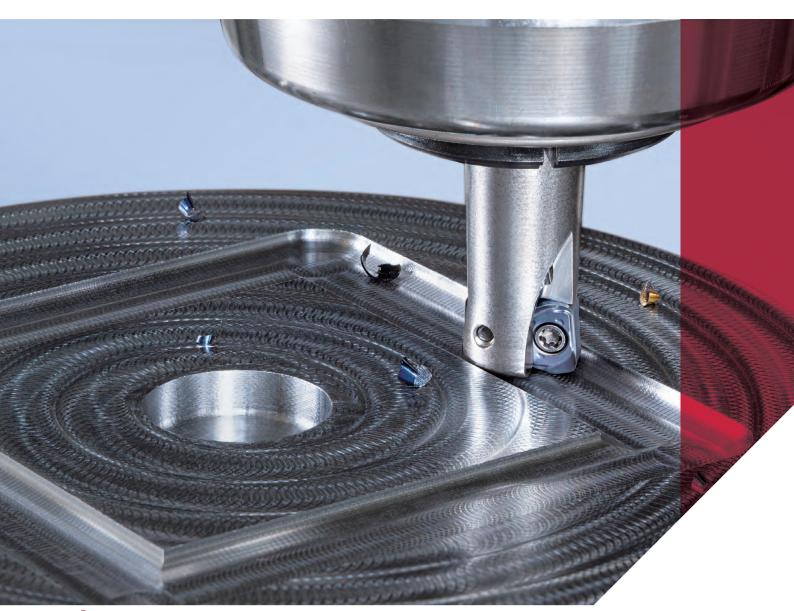
形 番	н	В	LF	OAW	トルク*	図
QC-1212F-CHP	12	12	65	15	3	1
OC-1212X-CHP (1)	12	12	100	15	3	2


(1) ホースを使用せずに、機械から直接切削油を供給するシステムに対応。


内部給油式シャンク

^{*} トルク:推奨締付けトルク (N·m)

Y軸ヘッドの送り側に位置するヘッドを外すことにより スペースができ、より大きな径のワークを加工することが可能。その際、プラグをシャンクに装着することで、 カップリング部を保護すると同時に、シャンクからの クーラント吐出を防止。



高送り加工

高速&高能率加工を実現する 極小径高送りカッタ

ADD 小型部品加工でも高い生産性を発揮

- 工具径 8 mm から対応。幅広い加工領域を誇 る小径多刃高送りカッタ
- 多刃仕様により高能率加工を実現
- 特殊ねじの採用により、高いインサートクラン プ剛性を実現。最大 1.2 mm / 刃までの高送り に対応

- 切れ刃に独自のインクリネーションを持たせ、 切りくず排出方向を制御。溝加工やポケット加 工での切りくずトラブルを解消

ラインナップ

インサート

- LNMU02-MM
- 両面仕様 4 コーナ インサート

APMX = 0.5 mm

- MM 形: 低抵抗な汎用ブレーカ

材種

- AH3225: 耐摩耗性と耐欠損性に優れた材種で、 鋼およびステンレス加工に最適
- AH130: 耐欠損性に優れた材種で、ステンレス 鋼やチタン合金の加工に最適
- AH8015: 耐摩耗性に優れた材種で、高硬度材 や鋳鉄加工に最適

カッタボディ

シャンクタイプ:

- EXN02R... (ショートタイプ)

 $DCX = \emptyset 8 - \emptyset 25 \text{ mm}$

- **EXN02R**L** (ロングタイプ)

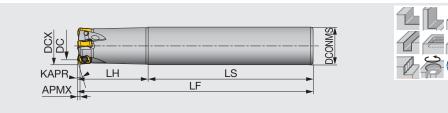
 $DCX = \emptyset 8 - \emptyset 25 \text{ mm}$

モジュラタイプ:

- HXN02R...

 $DCX = \emptyset 8 - \emptyset 25 \text{ mm}$

この製品の 詳しい情報は こちらから。

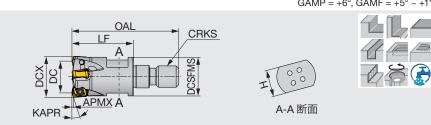

ニカッタ

EXN02

高送り加工用柄付きカッタ、両面仕様4コーナタイプLNMU02インサート使用

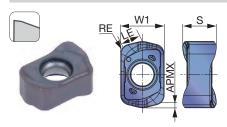
 $GAMP = +6^{\circ}, GAMF = +5^{\circ} \sim +11^{\circ}$

形 番	APMX	DCX	CICT	DC	DCONMS	LF	LH	LS	KAPR	WT (kg)	エア穴	インサート
EXN02R008M08.0-01	0.5	8	1	3.95	8	75	16	59	17°	0.02	あり	LNMU02
EXN02R008M08.0-01L	0.5	8	1	3.95	8	90	31	59	17°	0.03	あり	LNMU02
EXN02R010M10.0-02	0.5	10	2	5.85	10	80	20	60	17°	0.04	あり	LNMU02
EXN02R010M10.0-02L	0.5	10	2	5.85	10	100	40	60	17°	0.05	あり	LNMU02
EXN02R012M12.0-02	0.5	12	2	7.8	12	80	20	60	17°	0.06	あり	LNMU02
EXN02R012M12.0-02L	0.5	12	2	7.8	12	110	50	60	17°	0.08	あり	LNMU02
EXN02R016M16.0-04	0.5	16	4	11.8	16	100	30	70	17°	0.14	あり	LNMU02
EXN02R016M16.0-03L	0.5	16	3	11.8	16	120	50	70	17°	0.17	あり	LNMU02
EXN02R020M20.0-04L	0.5	20	4	15.8	20	160	80	80	17°	0.32	あり	LNMU02
EXN02R020M20.0-05	0.5	20	5	15.8	20	130	50	80	17°	0.27	あり	LNMU02
EXN02R025M25.0-07	0.5	25	7	20.8	25	140	60	80	17°	0.46	あり	LNMU02
EXN02R025M25.0-06L	0.5	25	6	20.8	25	180	100	80	17°	0.57	あり	LNMU02


TUNGFLEX

HXN02

ヘッド交換式 (タングフレックス) 高送りモジュラヘッド

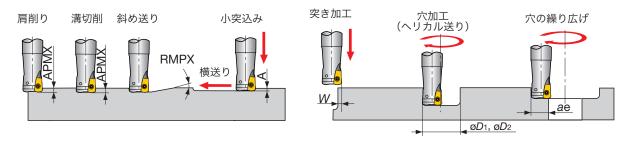


形 番	APMX	DCX	CICT	DC	DCSFMS	OAL	LF	Н	KAPR	CRKS	WT (kg)	エア穴	インサート
HXN02R008MM06-01	0.5	8	1	3.95	9.5	33.5	19	7	17°	M6	0.01	あり	LNMU02
HXN02R010MM06-02	0.5	10	2	5.85	9.5	31.5	17	7	17°	M6	0.01	あり	LNMU02
HXN02R012MM06-02	0.5	12	2	7.8	10	31.5	17	7	17°	M6	0.01	あり	LNMU02
HXN02R016MM08-04	0.5	16	4	11.8	14.5	40	23	10	17°	M8	0.03	あり	LNMU02
HXN02R020MM10-05	0.5	20	5	15.8	17.8	49	30	15	17°	M10	0.06	あり	LNMU02
HXN02R025MM12-07	0.5	25	7	20.8	23	52	30	17	17°	M12	0.1	あり	LNMU02

インサート

LNMU02-MM(汎用ブレーカ)

	Р	鋼				*	☆											
	M	ステ	シレス	ζ	*	☆												
	K	鋳鉄	ŧ			☆	*											
	N	非鉄	+金属															
	S	難削	l材		*		*									★:第	三選択	1
	Н	高硬	高硬度材 			☆	*									☆:第	三選択	1
						コ	ーテ	イン	ノグ									
形番			RE	APMX	AH130	AH3225	AH8015									LE	W1	S
LNMU0202ZER-MM			0.9	0.5		•	•									1.79	4	3.1


●:新製品

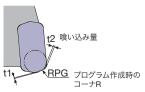
二標準切削条件

ISO	被削	材	硬さ	選択基準	材種	切削速度 Vc (m/min)	刃当り送り fz (mm/t)	
	炭素鋼		- 300HB	第一選択	AH3225	100 - 300	0.2 - 1.2	
	S45C, S55C	など	- 300HB	耐摩耗性重視	AH8015	100 - 300	0.2 - 1.2	
P	合金鋼		- 300HB	第一選択	AH3225	100 - 300	0.2 - 1.2	
	SCM440, SCr4	115 など	- 300HB	耐摩耗性重視	AH8015	100 - 300	0.2 - 1.2	
	プリハード		30 - 40HRC	第一選択	AH8015	100 - 200	0.2 - 0.8	
	NAK80, PX5	など	30 - 40HRC	耐欠損性重視	AH3225	100 - 200	0.2 - 0.8	
M	ステンレフ SUS304, SUS3		- 200HB	第一選択	AH130	100 - 150	0.2 - 0.8	
	ねずみ鋳		150 - 250HB	第一選択	AH8015	100 - 300	0.2 - 1.2	
K	FC250, FC30	0 など	150 - 250HB	耐欠損性重視	AH3225	100 - 300	0.2 - 1.2	
	ダクタイル		150 - 250HB	第一選択	AH8015	80 - 200	0.2 - 1.2	
	FCD400, FCD6	600 など	150 - 250HB	耐欠損性重視	AH3225	80 - 200	0.2 - 1.2	
	チタン合		- 40HRC	第一選択	AH130	30 - 60	0.2 - 0.7	
S	Ti-6Al-4V	など	- 40HRC	耐摩耗性重視	AH8015	30 - 60	0.2 - 0.7	
	耐熱合金		- 40HRC	第一選択	AH8015	20 - 50	0.1 - 0.3	
	インコネル, ハスラ	テロイ など	- 40HRC	耐欠損性重視	AH3225	20 - 50	0.1 - 0.3	
		SKD61など	40 - 50HRC	第一選択	AH8015	80 - 150	0.1 - 0.5	
H	高硬度鋼	3	40 - 50HRC	١١٠ داد	AH3225	80 - 150	0.1 - 0.5	
ш	15,000	SKD11など	50~60HRC	第一選択	AH8015	50 - 70	0.1 - 0.3	

■加工形態

		有効刃長	最大 傾斜角	最大 突込み深さ	最大 突き加工幅	最小ヘリカル 加工穴径	最大加工穴径	繰り広げ時の 最大切削幅
形番	DCX	APMX	RMPX	Α	W	ø D 1	øD2	ae
E/HXN02R008	8	0.5	1.07	0.15	2	10	13.2	5.87
E/HXN02R010	10	0.5	2.8	0.15	2	13.8	17	7.82
E/HXN02R012	12	0.5	1.9	0.15	2	17.8	21	9.81
E/HXN02R016	16	0.5	1.2	0.15	2	25.8	29	13.8
E/HXN02R020	20	0.5	0.88	0.15	2	33.8	37	17.8
E/HXN02M025	25	0.5	0.66	0.15	2	43.8	47	22.8

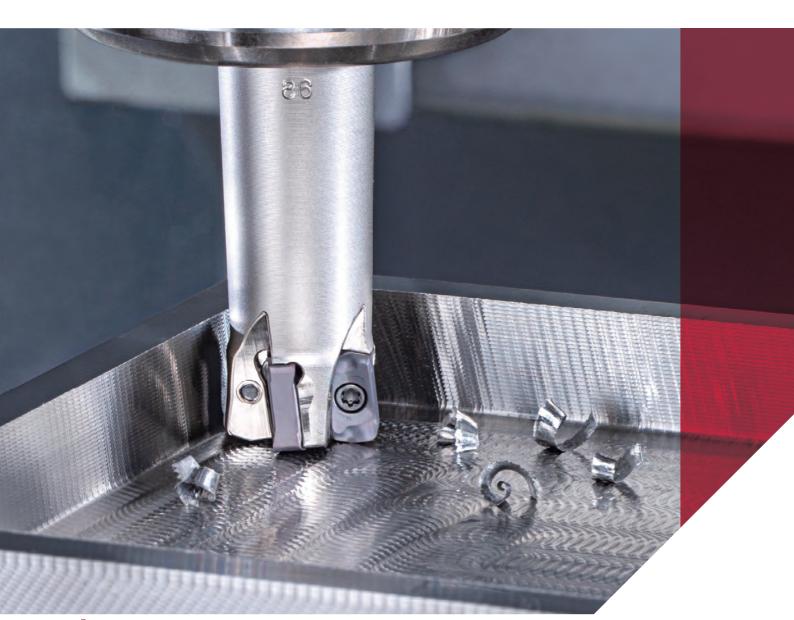
工具径: øDc (mm)、回転数: n (min-1)、送り速度: Vf (mm/min)、最大切込み: ap = 0.5 mm、刃数: CICT


		- 	, , , , , , , , , , , , , , , , , , ,	11+4×× • •	· · (· · · · · · · · · · · · · · ·	· & / &	/x v · (····	,	なノくツルだご	v up – c	,.o, <i>,</i>	1 XX . OI	01	
ø8, CI	CT = 1	ø10, C	ICT = 2	ø12, C	ICT = 2	_	ø16	_		ø20			ø25	
_	1.66		1/6		1/6		l	/f		V	/f		ı	/f
n	Vf	n	Vf	n	V f	n	CICT = 3	CICT = 4	n	CICT = 4	CICT = 5	n	CICT = 6	CICT = 7
7,960	6,370	6,370	10,200	5,310	8,500	3,980	9,560	12,740	3,180	10,180	12,720	2,550	12,240	14,280
						Vc = 200	m/min, <i>f</i> z =	= 0.8 mm/t						
7,960	6,370	6,370	10,200	5,310	8,500	3,980	9,560	12,740	3,180	10,180	12,720	2,550	12,240	14,280
						<i>V</i> c = 200	m/min, <i>f</i> z =	= 0.8 mm/t						
5,970	2,990	4,780	4,780	3,980	3,980	2,990	4,490	5,980	2,390	4,780	5,980	1,910	5,730	6,690
						<i>V</i> c = 150	m/min, <i>f</i> z =	= 0.5 mm/t						
4,780	2,390	3,820	3,820	3,190	3,190	2,390	3,590	4,780	1,910	3,820	4,780	1,530	4,590	5,360
						<i>V</i> c = 120) m/min, <i>f</i> z =	= 0.5 mm/t						
7,960	6,370	6,370	10.200	5,310	8,500	3,980	9,560	12,740	3,180	10,180	12,720	2,550	12,240	14,280
						<i>V</i> c = 200	m/min, <i>f</i> z =	= 0.8 mm/t						
5,970	4,780	4,780	7,650	3,980	6,370	2,990	7,180	9,570	2,390	7,650	9,560	1,530	7,350	8,570
						<i>V</i> c = 150) m/min, <i>f</i> z =	= 0.8 mm/t						
1,590	800	1,270	1,270	1,060	1,060	800	1,200	1,600	640	1,280	1,600	510	1,530	1,790
						<i>V</i> c = 40	m/min, fz =	0.5 mm/t						
1,190	240	1,000	400	800	320	600	360	480	480	390	480	380	460	540
						<i>V</i> c = 30	m/min, fz =	0.2 mm/t						
4,780	1,440	3,820	2,300	3,190	1,920	2,390	2,160	2,870	1,910	2,300	2,870	1,530	2,760	3,220
						<i>V</i> c = 120	m/min, <i>f</i> z =	= 0.3 mm/t						
2,390	480	1,910	770	1,590	640	1,190	720	960	950	760	950	760	920	1,070
						<i>V</i> c = 60	m/min, fz =	0.2 mm/t						

■プログラム上の刃先形状

通常のプログラム作成時のコーナRはR1で設定して下さい。これよりも大きなRで設定すると喰い込みが発生します。プログラム作成時の設定コーナRにおける削り残し量(t1)と喰い込み量(t2)を下表に示します。

最大切込み APMX (mm)	コーナ半径 RE (mm)	LE (mm)	プログラム作成 時のコーナ R: RPG	削り残し量 t1 (mm)	喰い込み量 t2 (mm)
0.5	0.9	2	0.5	0.38	0
0.5	0.9	2	0.8	0.31	0
0.5	0.9	2	1	0.26	0
0.5	0.9	2	1.5	0.14	0.08


※推奨

高送り加工

幅広い加工形態に対応する多機能高送りカッタ シリーズに、03 サイズの低切込み角 UER タイプインサートを拡充

ADD 難削材の長寿命加工に効果的な低切込み角タイプインサートが登場

- 同一ボディに 2 種類のインサートが装着可能
- UER タイプは小さな切込み角により、切りくず 厚みが薄くなり、刃先の負荷が低減し工具寿命 が延長。
- 経済性に優れる両面 4 コーナインサートの採用
- UER タイプは長い突き出し加工にも最適
- 豊富なボディおよびインサートラインナップによ り、あらゆる加工形態に対応可能

ラインナップ

インサート

- LNMU0303UER-MJ / ML APMX = 0.9 mm

チップブレーカ

- MJ 形:切りくず排出性に優れる汎用ブレーカ

- **ML 形**: 低抵抗ブレーカ

材種

- AH3225: 耐摩耗性と耐欠損性に優れた材種で、 鋼およびステンレス加工に最適 I
- AH130: 耐欠損性に優れた材種で、ステンレス 鋼やチタン合金の加工に最適
- AH8015: 耐摩耗性に優れた材種で、高硬度材 や鋳鉄加工に最適

カッタボディ

シャンクタイプ:

- EXN03...

(ショートタイプ、センタースルークーラント仕様) $DCX = \emptyset 16 - \emptyset 35 \text{ mm}$

- EXN03**-L

(ロングタイプ、センタースルークーラント仕様) DCX = Ø16 - Ø35 mm

- EXN03**-C

(ショートタイプ、ピンポイントクーラント仕様) DCX = Ø16 - Ø40 mm

- EXN03**-L-C

(ロングタイプ、ピンポイントクーラント仕様)

DCX = 0.016 - 0.040 mm

- EXN03**-N

(ショートタイプ、エア穴なし)

DCX = Ø16 - Ø32 mm

ボアタイプ:

- TXN03...

 $DCX = \emptyset 40 - \emptyset 50 \text{ mm}$ モジュラタイプ:

- HXN03...(センタースルークーラント仕様)

DCX = Ø16 - Ø32 mm

- HXN03**-C (ピンポイントクーラント仕様) DCX = Ø16 - Ø40 mm

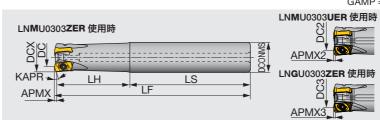
ニカッタ

TXN03

高送り加工用ボアタイプカッタ 両面仕様4コーナタイプLN*U03インサート使用

GAMP = +6°,GAMF = +12° ~ 13°

形番	APMX	APMX2	АРМХ3	DCX	CICT	DC	DC2	DC3	DCSFMS	DCONMS	CBDP	LF	b	KWW	KAPR	KAPR2*	KAPR3*	WT(kg)	エア穴	インサート
TXN03R040M16.0E05	1	0.9	1	40	5	33.6	32.8	33.7	35	16	18	40	5.6	8.4	17°	12°	17°	0.2	あり	LN*U03
TXN03R040M16.0E06	1	0.9	1	40	6	33.6	32.8	33.7	35	16	18	40	5.6	8.4	17°	12°	17°	0.2	あり	LN*U03
TXN03R050M22.0E05	1	0.9	1	50	5	43.6	42.8	43.7	47	22	20	50	6.3	10.4	17°	12°	17°	0.5	あり	LN*U03
TXN03R050M22.0E08	1	0.9	1	50	8	43.6	42.8	43.7	47	22	20	50	6.3	10.4	17°	12°	17°	0.5	あり	LN*U03
TXN03R050M22.2-08	1	0.9	1	50	8	43.6	42.8	43.7	47	22.225	20	50	5	8	17°	12°	17°	0.5	あり	LN*U03


*KAPR2: LNMU0303UER 使用時 *KAPR3: LNGU0303ZER 使用時

EXN03

高送り加工用柄付きカッタ(センタースルータイプ) 両面仕様4コーナタイプLN*U03インサート使用

 $GAMP = +6^{\circ}, GAMF = +5^{\circ} \sim +11^{\circ}$

形 番	APMX	APMX2	APMX3	DCX	CICT	DC	DC2	DC3	DCONMS	LF	LH	LS	KAPR	KAPR2*	KAPR3*	WT(kg)	エア穴	インサート
EXN03R016M16.0-02	1	0.9	1	16	2	9.6	8.8	9.8	16	100	30	70	15°	10°	15°	0.2	あり	LN*U03
EXN03R016M16.0-02L	1	0.9	1	16	2	9.6	8.8	9.8	16	150	50	100	15°	10°	15°	0.2	あり	LN*U03
EXN03R018M16.0-02	1	0.9	1	18	2	11.5	10.7	11.7	16	100	30	70	17°	12°	17°	0.2	あり	LN*U03
EXN03R018M16.0-02L	1	0.9	1	18	2	11.5	10.7	11.7	16	150	25	125	17°	12°	17°	0.2	あり	LN*U03
EXN03R020M20.0-03	1	0.9	1	20	3	13.5	12.7	13.6	20	130	50	80	17°	12°	17°	0.3	あり	LN*U03
EXN03R020M20.0-03L	1	0.9	1	20	3	13.5	12.7	13.6	20	160	80	80	17°	12°	17°	0.3	あり	LN*U03
EXN03R020M20.0-04	1	0.9	1	20	4	13.5	12.7	13.6	20	130	50	80	17°	12°	17°	0.3	あり	LN*U03
EXN03R022M20.0-03	1	0.9	1	22	3	15.5	14.7	15.6	20	130	50	80	17°	12°	17°	0.3	あり	LN*U03
EXN03R022M20.0-03L	1	0.9	1	22	3	15.5	14.7	15.6	20	160	30	130	17°	12°	17°	0.4	あり	LN*U03
EXN03R022M20.0-04	1	0.9	1	22	4	15.5	14.7	15.6	20	130	50	80	17°	12°	17°	0.3	あり	LN*U03
EXN03R025M25.0-04	1	0.9	1	25	4	18.5	17.7	18.6	25	140	60	80	17°	12°	17°	0.5	あり	LN*U03
EXN03R025M25.0-04L	1	0.9	1	25	4	18.5	17.7	18.6	25	180	100	80	17°	12°	17°	0.6	あり	LN*U03
EXN03R025M25.0-05	1	0.9	1	25	5	18.5	17.7	18.6	25	140	60	80	17°	12°	17°	0.5	あり	LN*U03
EXN03R028M25.0-04	1	0.9	1	28	4	21.5	20.7	21.6	25	140	60	80	17°	12°	17°	0.5	あり	LN*U03
EXN03R028M25.0-04L	1	0.9	1	28	4	21.5	20.7	21.6	25	180	35	145	17°	12°	17°	0.7	あり	LN*U03
EXN03R028M25.0-05	1	0.9	1	28	5	21.5	20.7	21.6	25	140	60	80	17°	12°	17°	0.5	あり	LN*U03
EXN03R030M32.0-04	1	0.9	1	30	4	23.5	22.7	23.6	32	150	70	80	17°	12°	17°	0.8	あり	LN*U03
EXN03R030M32.0-04L	1	0.9	1	30	4	23.5	22.7	23.6	32	200	120	80	17°	12°	17°	0.9	あり	LN*U03
EXN03R030M32.0-05	1	0.9	1	30	5	23.5	22.7	23.6	32	150	70	80	17°	12°	17°	0.8	あり	LN*U03
EXN03R032M32.0-05	1	0.9	1	32	5	25.5	24.7	25.6	32	150	70	80	17°	12°	17°	0.8	あり	LN*U03
EXN03R032M32.0-05L	1	0.9	1	32	5	25.5	24.7	25.6	32	200	120	80	17°	12°	17°	1.1	あり	LN*U03
EXN03R032M32.0-06	1	0.9	1	32	6	25.5	24.7	25.6	32	150	70	80	17°	12°	17°	0.9	あり	LN*U03
EXN03R035M32.0-05	1	0.9	1	35	5	28.5	27.7	28.6	32	150	35	115	17°	12°	17°	0.9	あり	LN*U03
EXN03R035M32.0-05L	1	0.9	1	35	5	28.5	27.7	28.6	32	200	35	165	17°	12°	17°	1.2	あり	LN*U03
EXN03R035M32.0-06	1	0.9	1	35	6	28.5	27.7	28.6	32	150	35	115	17°	12°	17°	0.9	あり	LN*U03

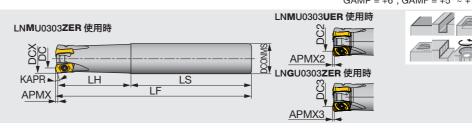
*KAPR2: LNMU0303UER 使用時 *KAPR3: LNGU0303ZER 使用時

EXN03-C

高送り加工用柄付きカッタ(ピンポイントタイプ) 両面仕様4コーナタイプLN*U03インサート使用

 $GAMP = +6^{\circ}, GAMF = +5^{\circ} \sim +11^{\circ}$

形 番	APMX	APMX2	АРМХ 3	DCX	CICT	DC	DC2	DC3	DCONMS	LF	LH	LS	KAPR	KAPR2*	KAPR3*	WT(kg)	エア穴	インサート
EXN03R016M16.0-02-C	1	0.9	1	16	2	9.6	8.8	9.8	16	100	30	70	15°	10°	15°	0.2	あり	LN*U03
EXN03R016M16.0-02L-C	1	0.9	1	16	2	9.6	8.8	9.8	16	150	50	100	15°	10°	15°	0.2	あり	LN*U03
EXN03R020M20.0-03-C	1	0.9	1	20	3	13.5	12.7	13.6	20	130	50	80	17°	12°	17°	0.3	あり	LN*U03
EXN03R020M20.0-03L-C	1	0.9	1	20	3	13.5	12.7	13.6	20	160	80	80	17°	12°	17°	0.3	あり	LN*U03
EXN03R020M20.0-04-C	1	0.9	1	20	4	13.5	12.7	13.6	20	130	50	80	17°	12°	17°	0.3	あり	LN*U03
EXN03R025M25.0-04-C	1	0.9	1	25	4	18.5	17.7	18.6	25	140	60	80	17°	12°	17°	0.5	あり	LN*U03
EXN03R025M25.0-04L-C	1	0.9	1	25	4	18.5	17.7	18.6	25	180	100	80	17°	12°	17°	0.6	あり	LN*U03
EXN03R025M25.0-05-C	1	0.9	1	25	5	18.5	17.7	18.6	25	140	60	80	17°	12°	17°	0.5	あり	LN*U03
EXN03R032M32.0-05-C	1	0.9	1	32	5	25.5	24.7	25.6	32	150	70	80	17°	12°	17°	0.8	あり	LN*U03
EXN03R032M32.0-05L-C	1	0.9	1	32	5	25.5	24.7	25.6	32	200	120	80	17°	12°	17°	1.1	あり	LN*U03
EXN03R032M32.0-06-C	1	0.9	1	32	6	25.5	24.7	25.6	32	150	70	80	17°	12°	17°	0.8	あり	LN*U03
EXN03R040M32.0-06-C	1	0.9	1	40	6	33.6	32.8	33.7	32	150	45	105	17°	12°	17°	1	あり	LN*U03
EXN03R040M32.0-06L-C	1	0.9	1	40	6	33.6	32.8	33.7	32	220	45	175	17°	12°	17°	1.4	あり	LN*U03

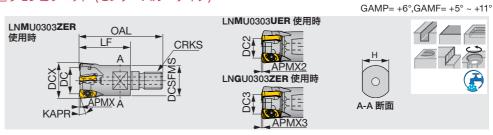

*KAPR2: LNMU0303UER 使用時 *KAPR3: LNGU0303ZER 使用時

EXN03-N

高送り加工用柄付きカッタ(ECOタイプ) 両面仕様コーナタイプLN*U03インサート使用

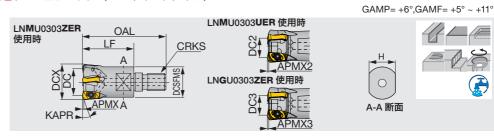
 $GAMP = +6^{\circ}, GAMF = +5^{\circ} \sim +11^{\circ}$

形 番	APMX	APMX2	APMX3	DCX	CICT	DC	DC2	DC3	DCONMS	LF	LH	LS	KAPR	KAPR2*	KAPR3*	WT(kg)	エア穴	インサート
EXN03R016M16.0-02N	1	0.9	1	16	2	9.6	8.8	9.8	16	100	30	70	15°	10°	15°	0.2	なし	LN*U03
EXN03R020M20.0-03N	1	0.9	1	20	3	13.5	12.7	13.6	20	130	50	80	17°	12°	17°	0.3	なし	LN*U03
EXN03R025M25.0-04N	1	0.9	1	25	4	18.5	17.7	18.6	25	140	60	80	17°	12°	17°	0.5	なし	LN*U03
EXN03R032M32.0-05N	1	0.9	1	32	5	25.5	24.7	25.6	32	150	70	80	17°	12°	17°	8.0	なし	LN*U03


*KAPR2: LNMU0303UER 使用時 *KAPR3: LNGU0303ZER 使用時

HXN03

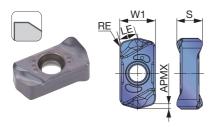
ヘッド交換式 (タングフレックス) 高送りモジュラヘッド (センタースルータイプ)


形 番	APMX	APMX2	APMX3	DCX	CICT	DC	DC2	DC3	OAL	LF	Н	DCSFMS	KAPR	KAPR2*	KAPR3*	CRKS	WT(kg)	エア穴	インサート
HXN03R016MM08-02	1	0.9	1	16	2	9.6	8.8	9.8	42	25	10	12.8	15°	10°	15°	M8	0.03	あり	LN*U03
HXN03R018MM08-02	1	0.9	1	18	2	11.5	10.7	11.7	42	25	10	14.5	17°	12°	17°	M8	0.04	あり	LN*U03
HXN03R020MM10-03	1	0.9	1	20	3	13.5	12.7	13.6	49	30	15	17.8	17°	12°	17°	M10	0.06	あり	LN*U03
HXN03R020MM10-04	1	0.9	1	20	4	13.5	12.7	13.6	49	30	15	17.8	17°	12°	17°	M10	0.06	あり	LN*U03
HXN03R022MM10-03	1	0.9	1	22	3	15.5	14.7	15.6	49	30	15	17.8	17°	12°	17°	M10	0.06	あり	LN*U03
HXN03R022MM10-04	1	0.9	1	22	4	15.5	14.7	15.6	49	30	15	17.8	17°	12°	17°	M10	0.07	あり	LN*U03
HXN03R025MM12-04	1	0.9	1	25	4	18.5	17.7	18.6	57	35	17	20.8	17°	12°	17°	M12	0.1	あり	LN*U03
HXN03R025MM12-05	1	0.9	1	25	5	18.5	17.7	18.6	57	35	17	20.8	17°	12°	17°	M12	0.11	あり	LN*U03
HXN03R028MM12-04	1	0.9	1	28	4	21.5	20.7	21.6	57	35	17	23	17°	12°	17°	M12	0.12	あり	LN*U03
HXN03R028MM12-05	1	0.9	1	28	5	21.5	20.7	21.6	57	35	17	23	17°	12°	17°	M12	0.12	あり	LN*U03
HXN03R030MM16-04	1	0.9	1	30	4	23.5	22.7	23.6	63	40	22	28.8	17°	12°	17°	M16	0.19	あり	LN*U03
HXN03R030MM16-05	1	0.9	1	30	5	23.5	22.7	23.6	63	40	22	28.8	17°	12°	17°	M16	0.2	あり	LN*U03
HXN03R032MM16-05	1	0.9	1	32	5	25.5	24.7	25.6	63	40	22	28.8	17°	12°	17°	M16	0.2	あり	LN*U03
HXN03R032MM16-06	1	0.9	1	32	6	25.5	24.7	25.6	63	40	22	28.8	17°	12°	17°	M16	0.21	あり	LN*U03

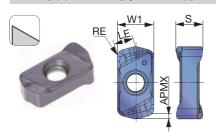
*KAPR2: LNMU0303UER 使用時 *KAPR3: LNGU0303ZER 使用時

HXN03-C

ヘッド交換式 (タングフレックス) 高送りモジュラヘッド (ピンポイントタイプ)


形 番	APMX	APMX2	APMX3	DCX	CICT	DC	DC2	DC3	OAL	LF	Н	DCSFMS	KAPR	KAPR2*	KAPR3*	CRKS	WT(kg)	エア穴	インサート
HXN03R016MM08-02-C	1	0.9	1	16	2	9.6	8.8	9.8	42	25	10	12.8	15°	10°	15°	M8	0.03	あり	LN*U03
HXN03R020MM10-03-C	1	0.9	1	20	3	13.5	12.7	13.6	49	30	15	17.8	17°	12°	17°	M10	0.06	あり	LN*U03
HXN03R020MM10-04-C	1	0.9	1	20	4	13.5	12.7	13.6	49	30	15	17.8	17°	12°	17°	M10	0.06	あり	LN*U03
HXN03R025MM12-04-C	1	0.9	1	25	4	18.5	17.7	18.6	57	35	17	20.8	17°	12°	17°	M12	0.1	あり	LN*U03
HXN03R025MM12-05-C	1	0.9	1	25	5	18.5	17.7	18.6	57	35	17	20.8	17°	12°	17°	M12	0.1	あり	LN*U03
HXN03R032MM16-05-C	1	0.9	1	32	5	25.5	24.7	25.6	63	40	22	28.8	17°	12°	17°	M16	0.2	あり	LN*U03
HXN03R032MM16-06-C	1	0.9	1	32	6	25.5	24.7	25.6	63	40	22	28.8	17°	12°	17°	M16	0.2	あり	LN*U03
HXN03R040MM16-06-C	1	0.9	1	40	6	33.6	32.8	33.7	63	40	22	28.8	17°	12°	17°	M16	0.27	あり	LN*U03

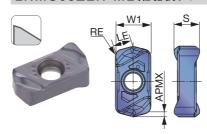
*KAPR2: LNMU0303UER 使用時 *KAPR3: LNGU0303ZER 使用時



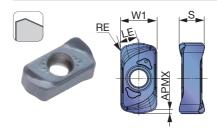
エインサート

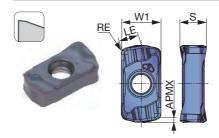
LNMU03ZER-MJ(汎用ブレーカ)

LNMU03ZER-MS(ステンレス用ブレーカ)


LNMU03UER-MJ(低切込み角、汎用ブレーカ)

M ステンレス


非鉄金属

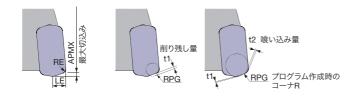

LNMU03ZER-ML(低抵抗ブレーカ)

LNGU03ZER-MH(刃先強化型ブレーカ)

LNMU03UER-ML(低切込み角、低抵抗ブレーカ)

	5	ナタン		×	W							
	S	インコネル	,				☆	\star		★:第	三選択	
	Н	高硬度材					☆	*	☆	☆:第	三選択	!
					ı.	ーテ	ィン	' グ				
形番		RE	APMX	AH130	AH3225	AH3035	AH725	AH8015	AH8005	LE	W1	S
LNMU0303ZER-MJ		1.2	1	•	•	•	•	•		3.2	6	4.3
LNMU0303ZER-ML		1.2	1	•	•	•	•	•		3.2	6	4.3
LNMU0303ZER-MS		1.2	1	•	•					3.2	6	4.3
LNGU0303ZER-MH		1.2	1					•		3.2	6	4.3
LNMU0303UER-MJ		1	0.9		•					3.1	6	4.1
LNMU0303UER-ML		1	0.9		•			•		3.1	6	4.1

●: 新製品 ●: 設定アイテム


■標準切削条件 UERタイプ

						和制津申	刃当り	送り: fz (m	ım/t)							
ISO	被削材	硬さ	選択基準	材種		切削速度	工具径:[OCX (mm)	小突込み・	ø16, CI	CT = 2	ø18, CI	CT = 2		ø20	
	100 133 13	~~	23/12-	1312	ブレーカ	Vc (m/min)	ø16 ~ ø22	2ø25 ~ ø50	加工時	n	V f	n	V f	n		CICT = 4
	炭素鋼 S45C, S55C など	- 300HB	第一選択 低抵抗	AH3225	MJ ML	100 - 300	0.5 - 1.2	0.5 - 1.5	0.1	3,980	7,960 <i>Vc</i> = 2	3,540 200 m/mi	7,080 n, fz = 1	3,180 mm/t	9,540	12,720
P	合金鋼 SCM440, SCr415 など	- 300HB	第一選択 低抵抗	AH3225	MJ ML	100 - 300	0.5 - 1.2	0.5 - 1.5	0.1	3,980	7,960 <i>Vc</i> = 2	3,540 200 m/mi	7,080 n, <i>f</i> z = 1	3,180 mm/t	9,540	12,720
	プリハードン鋼 NAK80, PX5 など	30 - 40HRC	第一選択 耐欠損性重視	AH8015 AH3225	MJ MJ	100 - 200	0.5 - 1	0.5 - 1	0.1	2,980	4,770 <i>Vc</i> = 1	2,650 50 m/mir	, -	2,390 3 mm/t	5,740	7,650
	オーステナイト系ステンレス鋼 SUS304, SUS316 など	- 200HB	第一選択 耐欠損性重視	AH130	ML MJ	80 - 150	0.3 - 1	0.3 - 1	0.1	2,390	2,870 <i>Vc</i> = 1	2,120 20 m/mir	2,550 n, fz = 0.6		3,440	4,590
M	析出硬化系ステンレス鋼 SUS630, 15-5PH,	28HRC -	第一選択 耐欠損性重視	AH130	ML MJ	80 - 150	0.3 - 0.8	0.3 - 0.8	0.1	2,390	2,390 <i>Vc</i> = 1	2,120 20 m/mir	2,120 n, fz = 0.5	,	2,870	3,820
	17-4PH など	40HRC -	第一選択 耐欠損性重視	AH130	ML MJ	80 - 120	0.3 - 0.5	0.3 - 0.5	0.1	1,990		1,770 00 m/mir			1,910	2,550
	ねずみ鋳鉄 FC250, FC300 など	150 - 250HB	第一選択 耐欠損性重視	AH8015 AH3225	MJ MJ	100 - 300	0.5 - 1.2	0.5 - 1.5	0.1	3,980	7,960 <i>Vc</i> = 2	3,540 200 m/mi	7,080 n, fz = 1		9,540	12,720
K	ダクタイル鋳鉄 FCD400 など	150 - 250HB	第一選択 耐欠損性重視	AH8015 AH3225	MJ MJ	80 - 200	0.5 - 1.2	0.5 - 1.5	0.1	2,980	5,960 <i>Vc</i> =	2,650 150 m/mi	5,300 n, <i>f</i> z = 1		7,170	9,560
S	チタン合金 Ti-6AI-4V など	- 40HRC	第一選択 耐摩耗性重視	AH130 AH8015	MJ MJ	30 - 60	0.3 - 0.8	0.3 - 0.8	0.08	800	960 Vc = 4	710 10 m/min	860 , fz = 0.6	640 mm/t	1,160	1,540
	耐熱合金 インコネル, ハステロイ など	- 40HRC	第一選択 耐欠損性重視	AH8015	ML MJ	20 - 50	0.2 - 0.5	0.2 - 0.5	0.05	600	360 Vc = 3	530 30 m/min	320 , fz = 0.3	480 mm/t	440	580
	熱間金型鋼 SKD61 など	40~50HRC	第一選択 耐欠損性重視	AH8015 AH3225	MJ MJ	80 - 150	0.1 - 0.5	0.1 - 0.5	0.05	2,390	1,440 <i>Vc</i> = 1	2,120 20 m/mir	,	1,910 3 mm/t	1,720	2,300
H	難削系熱間金型鋼 DAC**, DH**, DIEVER など	40~50HRC	第一選択 耐欠損性重視	AH8015 AH3225	MJ MJ	50 - 100	0.1 - 0.5	0.1 - 0.5	0.05	1,590	960 Vc = 8	1,410 30 m/min		1,270 mm/t	1,150	1,530
	冷間金型鋼 SKD11 など	50~60HRC	第一選択	AH8005	MJ	50 - 70	0.1 - 0.3	0.1 - 0.3	0.03	1,190	480 Vc = 6	1,060 60 m/min	430 , fz = 0.2	950 mm/t	570	760

[・]溝加工やポケット加工などの切りくずが滞留しやすい場合には、切りくず噛み込みを防止 ・工具の突き出し長さは必要最小限にしてください。突き出しが長い場合には、びびりが するためにエアブローを用いて切りくずを除去してください。

■ プログラム上の刃先形状

通常のプログラム作成時のコーナRはR1.5 で設定して下さい。これよりも大きなRで設定すると喰い込みが発生します。プログラム作成時の設定コーナRにおける削り残し量(t1)と喰い込み量(t2)を下表に示します。

LNMU0303UER...使用時

最大切込み	コーナ半径	LE (mm)	プログラム 作成時のコーナ R	削り残し量	喰い込み量
APMX (mm)	RE (mm)		RPG	t1 (mm)	t2 (mm)
0.9	1	3.5	1	0.48	-
0.9	1	3.5	1.5	0.39	-
0.9	1	3.5	2	0.3	0.12
0.9	1	3.5	2.5	0.21	0.31

[※]上記の値は各最大値を示します。※推奨

発生しやすくなりますので、回転速度と送り速度を下げてご使用ください。

	ø22			ø25		`	ø28			ø30	•		ø32	大切込		ø35			ø40			ø50	
n		<u> </u>	n		f .			/f			/f	n		/f			/f	n		/f			∕f
n	CICT = 3		"	CICT = 4		"		CICT = 5			CICT = 5	"		CICT = 6	n		CICT = 6	п		CICT = 6			CICT = 8
2,890	8,670	11,560	2,550	10,200	12,750	2,270	9,080	11,350	2,120	8,480	10,600	1,990	9,950	11,940	1,820	9,100	10,920	1,590	7,950	9,540	1,270	6,350	10,160
										Vc = 2	00 m/m	in, <i>f</i> z =	1 mm/t										
2,890	8,670	11,560	2,550	10,200	12,750	2,270	9,080	11,350	2,120	8,480	10,600	1,990	9,950	11,940	1,820	9,100	10,920	1,590	7,950	9,540	1,270	6,350	10,160
										Vc = 2	00 m/m	in, <i>f</i> z =	1 mm/t										
2,170	5,210	6,950	1,910	6,120	7,640	1,710	5,480	6,840	1,590	5,090	6,360	1,490	5,960	7,160	1,360	5,440	6,530	1,190	4,760	5,720	950	3,800	6,080
										Vc = 15	0 m/mir	fz = 0	.8 mm/	t									
1,740	3,140	4,180	1,530	3,680	4,590	1,360	3,270	4,080	1,270	3,050	3,810	1,190	3,570	4,290	1,090	3,270	3,930	950	2,850	3,420	760	2,280	3,650
										<i>Vc</i> = 12	0 m/mii	fz = 0	.6 mm/	t									
1,740	2,610	3,480	1,530	3,060	3,830	1,360	2,720	3,400	1,270	2,540	3,180	1,190	2,980	3,570	1,090	2,730	3,270	950	2,380	2,850	760	1,900	3,040
										Vc = 12	0 m/mir	fz = 0	.5 mm/	t									
1.450	1.740	2.320	1.270	2.040	2.540	1.140	1.830	2,280	1.060	1,700	2.120	990	1.980	2.380	910	1.820	2,190	800	1.600	1.920	640	1.280	2.050
,	,	,-	,	, -	,	,	,	,			00 m/mii					,	,		,	,		,	,
2.890	8.670	11.560	2.550	10.200	12.750	2.270	9.080	11.350	2.120	8.480	10.600	1.990	9.950	11,940	1.820	9.100	10.920	1.590	7.950	9.540	1.270	6.350	10.160
_,	-,	,	_,	,	,	_,	-,	,	_,		00 m/m			,	.,	-,	,	.,	,,,,,,,	-,	.,	-,	,
2 170	6.510	8 680	1 910	7 640	9 550	1 710	6 840	8,550	1 590			,		8,940	1.360	6 800	8 160	1 190	5 950	7 140	950	4 750	7.600
2,170	0,010	0,000	1,010	7,040	0,000	1,7 10	0,040	0,000	1,000		50 m/m			0,040	1,000	0,000	0,100	1,100	0,000	7,140	000	4,700	1,000
580	1.050	1 400	510	1,230	1 530	450	1.080	1,350	420					1,440	360	1,080	1 300	320	960	1.160	250	750	1,200
000	1,000	1,400	010	1,200	1,000	-100	1,000	1,000	720		0 m/min				000	1,000	1,000	020	000	1,100	200	700	1,200
430	390	520	380	460	570	340	410	510	320	390	480	300	450	540	270	410	490	240	360	440	190	290	460
400	000	320	000	400	570	040	410	310	020		0 m/min				210	710	430	240	000	440	150	200	400
1 740	1.570	2 000	1 520	1 0/0	2 200	1 260	1 640	2.040	1 270			,		2,150	1 000	1 640	1 070	950	1.430	1 710	760	1 140	1.830
1,740	1,570	2,090	1,000	1,040	2,300	1,300	1,040	2,040			1,910 0 m/mii				1,090	1,040	1,970	900	1,430	1,710	700	1,140	1,030
1 100	1.050	1 400	1 000	1 000	1 500	010	1 100	1.070				, -			700	1 100	1 000	040	000	1 100	F10	770	1 000
1,160	1,050	1,400	1,020	1,230	1,530	910	1,100	1,370	850		1,280				730	1,100	1,320	640	960	1,160	510	770	1,230
076	===	=00	=	0.10	=00				0.10		0 m/min	,			==0				100	===		000	0.15
870	530	700	760	610	760	680	550	680	640	520	640	600	600	720	550	550	660	480	480	580	380	380	610

Vc = 60 m/min, fz = 0.2 mm/t

・上記は標準シャンクの標準切削条件です。ロングシャンクでは刃数が異なる場合があり ますのでご注意下さい。ロングシャンクの切削条件については左下の使用上の注意を参 照願います。

・機械、被削材の剛性、主軸の出力などにより、加工条件は制限されます。条件設定は 標準切削条件の1/2程度から除々にアップし機械の動力、振動などを見極めてご使用く ださい。

■加工形態

形番	工具径	最大切込み	最大 傾斜角	最大 突込み深さ	最大 突き加工幅	最小 加工穴径	最大 加工穴径	最大切削幅 繰り広げ時
	DCX	APMX	RMPX	Α	W	øD1	øD2	ae
E/HXN03R016M	ø16	0.9	不可	不可	3.8	不可	不可	12.2
E/HXN03R018M	ø18	0.9	1.7°	0.27	3.8	26	34	14.2
E/HXN03R020M	ø20	0.9	1.4°	0.27	3.8	30	38	16.2
E/HXN03R022M	ø22	0.9	1.2°	0.27	3.8	34	42	18.2
E/HXN03R025M	ø25	0.9	1°	0.27	3.8	40	48	21.2
E/HXN03R028M	ø28	0.9	0.8°	0.27	3.8	46	54	24.2
E/HXN03R030M	ø30	0.9	0.7°	0.27	3.8	50	58	26.2
E/HXN03R032M	ø32	0.9	0.7°	0.27	3.8	54	62	28.2
EXN03R035M	ø35	0.9	0.6°	0.27	3.8	60	68	31.2
E/H/TXN03R040M	ø40	0.9	0.5°	0.27	3.8	70	78	36.2
TXN03R050M	ø50	0.9	0.4°	0.27	3.8	90	98	46.2

・工具径 ø33 mm以上では切りくずが噛み込みやすく、溝加工やポケット加工等の形状加工は推奨しておりません。

高送り加工

高性能で高い経済性を誇る 超高送りカッタ登場

ADD 6 コーナインサートで、さらなる収益性を追求

- 小さな切込み角で、長い突出しでもびびりの 少ない安定した超高能率加工を実現
- 高いランピング性能で、掘り込み加工に最適
- 有効径が大きく、削り残しが少ない

ラインナップ

インサート

- WXMU03-MM 両面仕様 6 コーナ インサート APMX = 1 mm

チップブレーカ

- MM 形: 低抵抗な汎用ブレーカ

材種

- AH3225: 耐摩耗性と耐欠損性に優れた材種で、 鋼およびステンレス加工に最適
- AH8015: 耐摩耗性に優れた材種で、高硬度材 や鋳鉄加工に最適

カッタボディ

ボアタイプ:

- TXWX03...

DCX = Ø40 - Ø50 mm

シャンクタイプ:

- **EXWX03...** (ショートタイプ)

DCX = Ø16 - Ø32 mm

- **EXWX03**L** (ロングタイプ)

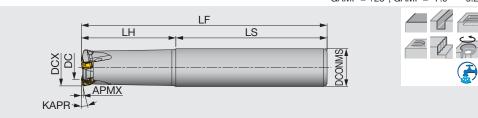
DCX = Ø16 - Ø32 mm

モジュラタイプ:

- HXWX03...

DCX = Ø16 - Ø32 mm

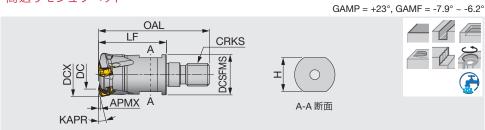
この製品の 詳しい情報は こちらから。


ニカッタ

EXWX03

ねじ止め式高送り加工用柄付きカッタ、両面仕様6コーナタイプWXMU03形インサート使用

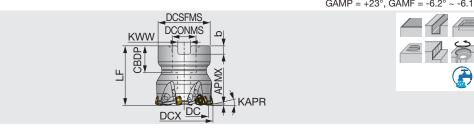
GAMP = +23°, GAMF = -7.9° \sim -6.2°


形番	APMX	DCX	CICT	DC	DCONMS	LS	LH	LF	KAPR	WT(kg)	エア穴	インサート
EXWX03M016C16.0R02	1	16	2	8.9	16	70	30	100	12°	0.14	あり	WXMU03
EXWX03M016C16.0R02L	1	16	2	8.9	16	100	50	150	12°	0.21	あり	WXMU03
EXWX03M020C20.0R03	1	20	3	12.8	20	80	50	130	12°	0.26	あり	WXMU03
EXWX03M020C20.0R03L	1	20	3	12.8	20	80	80	160	12°	0.31	あり	WXMU03
EXWX03M025C25.0R04	1	25	4	17.8	25	80	60	140	12°	0.46	あり	WXMU03
EXWX03M025C25.0R04L	1	25	4	17.8	25	80	100	180	12°	0.58	あり	WXMU03
EXWX03M032C32.0R05	1	32	5	24.7	32	80	70	150	12°	0.84	あり	WXMU03
EXWX03M032C32.0R05L	1	32	5	24.7	32	80	120	200	12°	1.11	あり	WXMU03

TUNGFLEX

HXWX03-M

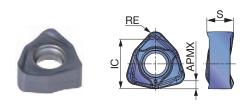
ヘッド交換式(タングフレックス)高送りモジュラヘッド

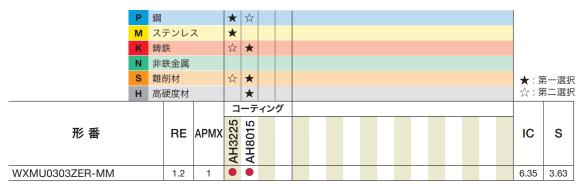

形 番	APMX	DCX	CICT	DC	OAL	LF	Н	DCSFMS	KAPR	CRKS	WT(kg)	エア穴	インサート
HXWX03M016M08R02	1	16	2	8.9	42	25	10	12.8	12°	M8	0.03	あり	WXMU03
HXWX03M020M10R03	1	20	3	12.8	49	30	15	17.8	12°	M10	0.06	あり	WXMU03
HXWX03M025M12R04	1	25	4	17.8	57	35	17	20.8	12°	M12	0.1	あり	WXMU03
HXWX03M032M16R05	1	32	5	24.7	63	40	22	28.8	12°	M16	0.21	あり	WXMU03

TXWX03

ねじ止め式高送り加工用カッタ、両面仕様6コーナタイプWXMU03形インサート使用

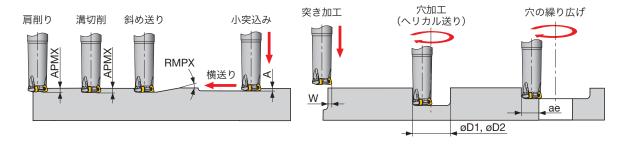
GAMP = $+23^{\circ}$, GAMF = $-6.2^{\circ} \sim -6.1^{\circ}$




形 番	APMX	DCX	CICT	DC	DCSFMS	DCONMS	CBDP	LF	b	KWW	KAPR	WT(kg)	エア穴	インサート
TXWX03M040B16.0R06	1	40	6	32.7	35	16	18	40	5.6	8.4	12°	0.22	あり	WXMU03
TXWX03M050B22.0R08	1	50	8	42.7	47	22	20	50	6.3	10.4	12°	0.46	あり	WXMU03

インサート

WXMU0303-MM

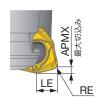

●:新製品

■標準切削条件

ISO	被『	削材	硬さ	選択基準	材種	チップ ブレーカ	切削速度 Vc (m/min)	刃当り送り fz (mm/t)	
		素鋼	- 300HB	第一選択	AH3225	MM	100 - 300	0.5 - 1.5	
	S15C, SS	S400 など	- 300110	耐摩耗性重視	AH8015	IVIIVI	100 - 300	0.5 - 1.5	
P		合金鋼	- 300HB	第一選択	AH3225	MM	100 - 250	0.5 - 1.5	
	S55C, SC	M440 など	000115	耐摩耗性重視	AH8015	141141	100 200	0.0 1.0	
		ードン鋼	30 - 40HRC	第一選択	AH3225	MM	100 - 200	0.5 - 1.2	
	NAK80,	PX5 など	00 1011110	耐摩耗性重視	AH8015		.00 200	0.0	
M		·系ステンレス鋼 US316 など	- 200HB	第一選択	AH3225	ММ	80 - 150	0.5 - 1	
		系ステンレス鋼 X20Cr13 など	- 200HB	第一選択	AH3225	MM	50 - 120	0.3 - 1	
		み鋳鉄	150 - 250HB	第一選択	AH8015	MM	100 - 300	0.5 - 1.5	
K	FC250, F	C300 など	100 200115	耐欠損性重視	AH3225	IVIIVI	100 000	0.0 1.0	
		イル鋳鉄	150 - 250HB	第一選択	AH8015	MM	80 - 200	0.5 - 1.5	
	FCD40	00 など	100 200115	耐欠損性重視	AH3225	141141	00 200	0.0 1.0	
S		ン合金 4V など	- 40HRC	第一選択	AH3225	MM	30 - 60	0.3 - 0.7	
3		l合金 ル718 など	- 40HRC	第一選択	AH8015	MM	20 - 50	0.1 - 0.3	
		SKD61 など	40 - 50HRC	第一選択	AH8015	MM	80 - 150	0.1 - 0.5	
H	高硬度鋼	31,001,62	-10 - 0011110	耐欠損性重視	AH3225	IVIIVI	00 - 100	0.1 - 0.0	
	THE RALES	SKD11 など	50 - 60HRC	第一選択	AH8015	ММ	50 - 70	0.03 - 0.1	

■加工形態

		最大切込み	最大傾斜角	最大 突込み深さ	最大 突き加工幅	最小 加工穴径	最大 加工穴径	繰り広げ時 最大切削幅
形番	DCX	APMX	RMPX	Α	W	øD1	øD2	ae
E/HXWX03M016	16	1	3	0.3	4	25	30	12
E/HXWX03M020	20	1	2	0.3	4	31	38	16
E/HXWX03M025	25	1	1.4	0.3	4	41	48	21
E/HXWX03M032	32	1	1	0.3	4	54	62	28
TXWX03M040	40	1	0.7	0.3	4	71	78	36
TXWX03M050	50	1	0.6	0.3	4	87	98	46



工具径: DCX (mm)、回転数: n (min⁻¹)、送り速度: Vf (mm/min)、最大切込み: APMX = 1 mm、刃数: CICT

	一一 エ	. 50x (IIIIII)	N 11444	/ (IIIIII /	3 7 KHIX . VI	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4271777	AW.A. –	/33/			
ø16, CI	CT = 2	ø20, C	ICT = 3	ø25, C	ICT = 4	ø32, Cl	ICT = 5	ø40, C	ICT = 6	ø50, C	ICT = 8	
n	Vf	n	Vf	n	V f	n	Vf	n	V f	n	V f	
3,981	7,962	3,185	9,554	2,548	10,191	1,990	9,952	1,592	9,554	1,274	10,191	
				١	/c = 200 m/mi	n, fz = 1 mm/	't					
3,981	7,962	3,185	9,554	2,548	10,191	1,990	9,952	1,592	9,554	1,274	10,191	
				l	/c = 200 m/mi	n, fz = 1 mm/	't					
2,986	5,971	2,389	7,166	1,911	7,643	1,493	7,464	1,194	7,166	955	7,643	
				V	c = 150 m/mir	fz = 0.7 mm	ı/t					
2,389	4,777	1,911	5,732	1,529	6,115	1,194	5,971	955	5,732	764	6,115	
				V	c = 120 m/mir	n, fz = 0.5 mm	ı/t					
1,990	3,981	1,592	4,777	1,274	5,096	995	4,976	796	4,777	637	5,096	
				V	c = 100 m/mir	fz = 0.3 mm	n/t					
3,981	7,962	3,185	9,554	2,548	10,191	1,990	9,952	1,592	9,554	1,274	10,191	
				١	/c = 200 m/mi	n, fz = 1 mm/	't					
2,986	5,971	2,389	7,166	1,911	7,643	1,493	7,464	1,194	7,166	955	7,643	
				١	/c = 150 m/mi	n, fz = 1 mm/	't					
796	1,592	637	1,911	510	2,038	398	1,990	318	1,911	255	2,038	
				V	/c = 40 m/min	fz = 0.4 mm	/t					
597	1,194	478	1,433	382	1,529	299	1,493	239	1,433	191	1,529	
				V	/c = 30 m/min	fz = 0.2 mm/s	/t					
2,389	4,777	1,911	5,732	1,529	6,115	1,194	5,971	955	5,732	764	6,115	
				V	c = 120 m/mir	fz = 0.3 mm	n/t					
1,194	2,389	955	2,866	764	3,057	597	2,986	478	2,866	382	3,057	
				ν	/c = 60 m/min	fz = 0.1 mm	/t					
	3,981 2,986 2,389 1,990 3,981 2,986 796 597 2,389	Ø16, CICT = 2 n Vf 3,981 7,962 3,981 7,962 2,986 5,971 2,389 4,777 1,990 3,981 3,981 7,962 2,986 5,971 796 1,592 597 1,194 2,389 4,777	ø16, CICT = 2 ø20, C n Vf n 3,981 7,962 3,185 3,981 7,962 3,185 2,986 5,971 2,389 2,389 4,777 1,911 1,990 3,981 1,592 3,981 7,962 3,185 2,986 5,971 2,389 796 1,592 637 597 1,194 478 2,389 4,777 1,911	Ø16, CICT = 2 Ø20, CICT = 3 n Vf n Vf 3,981 7,962 3,185 9,554 3,981 7,962 3,185 9,554 2,986 5,971 2,389 7,166 2,389 4,777 1,911 5,732 1,990 3,981 1,592 4,777 3,981 7,962 3,185 9,554 2,986 5,971 2,389 7,166 796 1,592 637 1,911 597 1,194 478 1,433 2,389 4,777 1,911 5,732	Ø16, CICT = 2 Ø20, CICT = 3 Ø25, C n Vf n Vf n 3,981 7,962 3,185 9,554 2,548 2,986 5,971 2,389 7,166 1,911 2,389 4,777 1,911 5,732 1,529 1,990 3,981 1,592 4,777 1,274 2,986 5,971 2,389 7,166 1,911 796 1,592 637 1,911 510 597 1,194 478 1,433 382 2,389 4,777 1,911 5,732 1,529 V 1,194 2,389 9,554 2,548	ø16, CICT = 2 ø20, CICT = 3 ø25, CICT = 4 n Vf n Vf 3,981 7,962 3,185 9,554 2,548 10,191 Vc = 200 m/mi 3,981 7,962 3,185 9,554 2,548 10,191 Vc = 200 m/mi 2,986 5,971 2,389 7,166 1,911 7,643 Vc = 150 m/mir 1,990 3,981 1,592 4,777 1,274 5,096 Vc = 100 m/mir 3,981 7,962 3,185 9,554 2,548 10,191 Vc = 200 m/mir 2,986 5,971 2,389 7,166 1,911 7,643 Vc = 200 m/mir 2,986 5,971 2,389 7,166 1,911 7,643 Vc = 150 m/mir 796 1,592 637 1,911 510 2,038 Vc = 40 m/mir 597 1,194 478 1,433 382 1,529 Vc =	Ø16, CICT = 2 Ø20, CICT = 3 Ø25, CICT = 4 Ø32, CICT = 4 n Vf n Vf n Vf n 3,981 7,962 3,185 9,554 2,548 10,191 1,990 Vc = 200 m/min, fz = 1 mm/ 3,981 7,962 3,185 9,554 2,548 10,191 1,990 2,986 5,971 2,389 7,166 1,911 7,643 1,493 Vc = 150 m/min, fz = 0.7 mm 2,389 4,777 1,911 5,732 1,529 6,115 1,194 Vc = 120 m/min, fz = 0.5 mm 1,990 3,981 1,592 4,777 1,274 5,096 995 Vc = 100 m/min, fz = 0.3 mm 3,981 7,962 3,185 9,554 2,548 10,191 1,990 2,986 5,971 2,389 7,166 1,911 7,643 1,493 Vc = 150 m/min, fz = 1 mm/ 597 1,194 478 1,433 <t< td=""><td>Ø16, CICT = 2 Ø20, CICT = 3 Ø25, CICT = 4 Ø32, CICT = 5 n Vf n Vf n Vf n Vf 3,981 7,962 3,185 9,554 2,548 10,191 1,990 9,952 Vc = 200 m/min, fz = 1 mm/t 3,981 7,962 3,185 9,554 2,548 10,191 1,990 9,952 Vc = 200 m/min, fz = 1 mm/t 2,986 5,971 2,389 7,166 1,911 7,643 1,493 7,464 Vc = 150 m/min, fz = 0.7 mm/t 2,389 4,777 1,911 5,732 1,529 6,115 1,194 5,971 1,990 3,981 1,592 4,777 1,274 5,096 995 4,976 Vc = 100 m/min, fz = 0.3 mm/t 1,990 9,952 Vc = 200 m/min, fz = 0.3 mm/t 1,990 9,952 Vc = 200 m/min, fz = 0.3 mm/t 1,990 9,952 Vc = 200 m/min, fz = 1 mm/t 1,990 9,952 2,986 5,971 2,389</td><td>Ø16, CICT = 2 Ø20, CICT = 3 Ø25, CICT = 4 Ø32, CICT = 5 Ø40, CICT = 5 n Vf n N N</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	Ø16, CICT = 2 Ø20, CICT = 3 Ø25, CICT = 4 Ø32, CICT = 5 n Vf n Vf n Vf n Vf 3,981 7,962 3,185 9,554 2,548 10,191 1,990 9,952 Vc = 200 m/min, fz = 1 mm/t 3,981 7,962 3,185 9,554 2,548 10,191 1,990 9,952 Vc = 200 m/min, fz = 1 mm/t 2,986 5,971 2,389 7,166 1,911 7,643 1,493 7,464 Vc = 150 m/min, fz = 0.7 mm/t 2,389 4,777 1,911 5,732 1,529 6,115 1,194 5,971 1,990 3,981 1,592 4,777 1,274 5,096 995 4,976 Vc = 100 m/min, fz = 0.3 mm/t 1,990 9,952 Vc = 200 m/min, fz = 0.3 mm/t 1,990 9,952 Vc = 200 m/min, fz = 0.3 mm/t 1,990 9,952 Vc = 200 m/min, fz = 1 mm/t 1,990 9,952 2,986 5,971 2,389	Ø16, CICT = 2 Ø20, CICT = 3 Ø25, CICT = 4 Ø32, CICT = 5 Ø40, CICT = 5 n Vf n N N	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

■プログラム上の刃先形状

通常のプログラム作成時のコーナRはR1.5で設定して下さい。これよりも大きなRで設定すると喰い込みが発生します。 プログラム作成時の設定コーナ R における削り残し量(t1)と喰い込み量(t2)を下表に示します。

最大切 APMX	コーナ半径 RE (mm)	LE (mm)	プログラム作成 時のコーナ R: RPG	削り残し量 t1 (mm)	喰い込み量 t2 (mm)	
1	1.2	3.5	1	0.56	-	
1	1.2	3.5	1.5	0.46	-	
1	1.2	3.5	2	0.35	0.16	
1	1.2	3.5	2.5	0.2	0.5	
	<u> </u>					

※推奨

直角肩削り加工

高い剛性と信頼性を誇る 小径直角肩削りカッタ

ADD 最適化されたさらい刃形状により、優れた加工面品位を達成

- 工具径 8 mm 以上に対応する高能率直角肩削 りカッタ
- 多刃仕様により高能率加工を実現
- インサートの小型化で、大きな芯厚を確保。 非常に高い工具剛性を実現

ラインナップ

インサート

- TOMT04-MM 片面3コーナ仕様 インサート APMX = 3.5 mmコーナR = 0.4, 0.8 mm

チップブレーカ

- MM 形: 低抵抗な汎用ブレーカ

カッタボディ

シャンクタイプ:

- **EPA04R...** (ショートタイプ)

 $DC = \emptyset 8 - \emptyset 25 \text{ mm}$

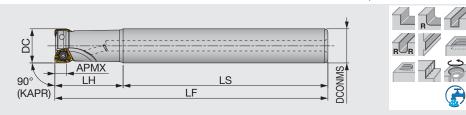
- **EPA04R**L** (ロングタイプ)

DC = Ø10 - Ø25 mm

材種

- AH3225: 耐摩耗性と耐欠損性に優れた材種で、鋼およびステンレス 加工に最適
- AH8015: 耐摩耗性に優れた材種で、高硬度材加工に最適
- AH120: 耐摩耗性および耐チッピング性に優れた材種で、鋳鉄加工に 最適

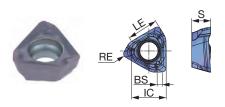
TUNG-TRI


ニカッタ

EPA04

ねじ止め式高精度壁面加工用 柄付きカッタ、TOMT04形インサート使用

GAMP = $+12.1^{\circ}$ ~ $+12.2^{\circ}$, GAMF = -14.2° ~ -18.3°



形番	APMX	DC	CICT	DCONMS	LS	LH	LF	WT(kg)	エア穴	インサート
EPA04R008M08.0-01	3.5	8	1	8	48	12	60	0.02	あり	TOMT04
EPA04R010M10.0-02	3.5	10	2	10	60	20	80	0.04	あり	TOMT04
EPA04R010M10.0-02L	3.5	10	2	10	65	35	100	0.05	あり	TOMT04
EPA04R012M12.0-02	3.5	12	2	12	60	20	80	0.06	あり	TOMT04
EPA04R012M12.0-03	3.5	12	3	12	60	20	80	0.06	あり	TOMT04
EPA04R012M12.0-02L	3.5	12	2	12	85	35	120	0.09	あり	TOMT04
EPA04R016M16.0-03	3.5	16	3	16	70	20	90	0.12	あり	TOMT04
EPA04R016M16.0-04	3.5	16	4	16	70	20	90	0.12	あり	TOMT04
EPA04R016M16.0-03L	3.5	16	3	16	105	35	140	0.19	あり	TOMT04
EPA04R020M20.0-04	3.5	20	4	20	70	30	100	0.21	あり	TOMT04
EPA04R020M20.0-05	3.5	20	5	20	70	30	100	0.21	あり	TOMT04
EPA04R020M20.0-04L	3.5	20	4	20	165	35	200	0.44	あり	TOMT04
EPA04R025M25.0-05	3.5	25	5	25	80	35	115	0.39	あり	TOMT04
EPA04R025M25.0-06	3.5	25	6	25	80	35	115	0.39	あり	TOMT04
EPA04R025M25.0-04L	3.5	25	4	25	160	40	200	0.7	あり	TOMT04

インサート

TOMT-MM

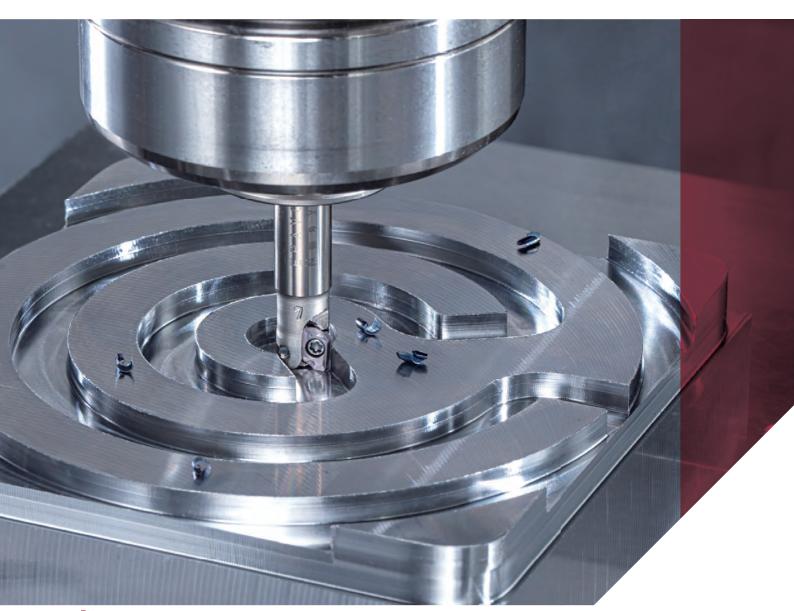
	Р	鋼		*	☆									
N N	VI	ステンレ	ζ	*										
	K	鋳鉄			*									
1	N	非鉄金属												
	S	難削材		*		*						三選択		
H	Н	高硬度材				*					☆:勇	9二選択		
					コー	ティ	ング	r						
形番		RE	APMX	AH3225	AH120	AH8015					LE	IC	S	BS
TOMT040204PXER-MM		0.4	3.5	•	•	•					3.6	4	2.2	0.6
TOMT040208PXER-MM		0.8	3.5	•	•	•					3.6	4	2.2	0.2

■標準切削条件

EPA04

ISO	被消	り 材	硬さ	材種	切削速度 Vc (m/min)	刃当り送り fz (mm/t)
	低炭 SS400, S		- 200 HB	AH3225	100 - 250	0.05 - 0.12
P	炭素鋼、 S55C, SCM		- 300 HB	AH3225	100 - 230	0.05 - 0.12
	プリハー NAK80, F		30 - 40 HRC	AH3225	100 - 180	0.05 - 0.1
M	ステン SUS30		-	AH3225	90 - 200	0.05 - 0.1
K	ねずみ FC250		150 - 250 HB	AH120	100 - 300	0.05 - 0.12
	ダクタイ FCD45		150 - 250 HB	AH120	100 - 200	0.05 - 0.12
S	チタン Ti-6Al-4		-	AH3225	20 - 60	0.04 - 0.07
3	耐熱 インコネル		-	AH8015	20 - 40	0.04 - 0.07
H	高硬度鋼	SKD61 など	40 - 50 HRC	AH8015	50 - 150	0.04 - 0.07
	[P] IX /又 IPI	SKD11 など	50 - 60 HRC	AH8015	40 - 70	0.04 - 0.07

[・]切りくずが滞留しやすい場合には、切りくず噛み込みを防止するためにエアブローを用いて切りくずを除去してください。 ・鋳肌などの切り込み変動がある場合や断続部の多い被削材を加工する場合には、刃当り送り fz を下限側に設定してください。


[・]機械、被削材の剛性、主軸の出力などにより、加工条件は制限されます。切込みや切削幅、工具突き出し量が大きい場合は、Vc, fz を下限側に設定し、機械の動力、振動などを見極めてご使用ください。

直角肩削り加工

新たに 04 サイズと 12 サイズを追加し あらゆる加工形態に対応可能な 直角肩削りカッタ

ADD 独自の V 字底面インサートで最大能率を実現する肩削りカッタが、より幅広い加工に対応可能に

- インサートの V 字底面形状が心厚を残しつつ バックメタルを厚くさせ、高いボディ剛性を実現
- 多刃仕様により高能率加工を実現
- 大きなすくい角と逆ポジ設計で、低抵抗と高い 刃先強度を両立
- 04 サイズは、最小工具径 6 mmから対応可能
- 大きな切りくずポケット採用で高い切りくず排 出性
- **12 サイズ**は、コーナ R0.4 から 3.0 までライン ナップ。幅広い形状に適用可能。アルミ加工用 AM ブレーカもあり、多種多様な被削材に対応

ラインナップ

インサート

- **AVMT04-MM** : APMX = 4 mm, RE = 0.4, 0.8 mm

- **AVMT12-MM** : APMX = 11.5 mm, RE = 0.4 - 1.6 mm APMX = 10.5 mm, RE = 2, 3 mm

- **AVGT12-AM**: APMX = 11.5 mm, RE = 0.4, 0.8 mm

チップブレーカ

- MM 形: 低抵抗な汎用ブレーカ

- AM 形: 非鉄金属加工用ブレーカ

材種

- AH3225: 耐摩耗性と耐欠損性に優れた材種で、鋼お よびステンレス加工に最適 |
- AH120: 耐摩耗性および耐チッピング性に優れた材種 で、鋳鉄加工に最適
- T1215: 耐摩耗性に優れた材種で、鋳鉄加工に最適
- T3225: 耐摩耗性に優れた材種で、鋼・ステンレス加 工に最適
- KS05F: 刃立ち性が良く、耐摩耗性にも優れる材種で、 非鉄金属加工に最適

カッタボディ

シャンクタイプ:

- **EPAV04...** (ショートタイプ)

 $DC = \emptyset6 - \emptyset16 \text{ mm}$

- **EPAV04**L** (ロングタイプ)

DC = Ø8 - Ø16 mm

- **EPAV12...** (ショートタイプ)

DC = Ø12 - Ø32 mm

- **EPAV12**L** (ロングタイプ)

 $DC = \emptyset 16 - \emptyset 32 \text{ mm}$ ボアタイプ:

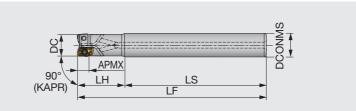
- TPAV12...

 $DC = \emptyset 50 - \emptyset 63 \text{ mm}$ モジュラタイプ:

- HPAV12...

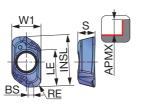
 $DC = \emptyset 16 - \emptyset 40 \text{ mm}$

上記新シリーズ 以外の情報は こちらから。


カッタ

EPAV04

汎用直角肩加工用 柄付きカッタ

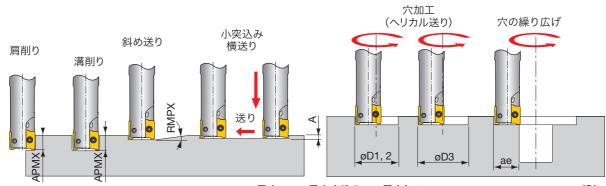


形 番	APMX	DC	CICT	DCONMS	LS	LH	LF	WT(kg)	エア穴	インサート
EPAV04M006C06.0R01	4	6	1	6	48	12	60	0.01	あり	AVMT04
EPAV04M008C08.0R02	4	8	2	8	48	12	60	0.02	あり	AVMT04
EPAV04M008C08.0R02L	4	8	2	8	60	20	80	0.03	あり	AVMT04
EPAV04M010C10.0R02	4	10	2	10	60	20	80	0.04	あり	AVMT04
EPAV04M010C10.0R03	4	10	3	10	60	20	80	0.04	あり	AVMT04
EPAV04M010C10.0R02L	4	10	2	10	65	35	100	0.05	あり	AVMT04
EPAV04M012C12.0R03	4	12	3	12	60	20	80	0.06	あり	AVMT04
EPAV04M012C12.0R04	4	12	4	12	60	20	80	0.06	あり	AVMT04
EPAV04M012C12.0R03L	4	12	3	12	85	35	120	0.09	あり	AVMT04
EPAV04M016C16.0R04	4	16	4	16	70	20	90	0.12	あり	AVMT04
EPAV04M016C16.0R05	4	16	5	16	70	20	90	0.12	あり	AVMT04
EPAV04M016C16.0R04L	4	16	4	16	105	35	140	0.19	あり	AVMT04

インサート

AVMT04-MM

	Р	鋼		☆	*							
	M	ステンレス	Z		*							
	K	鋳鉄		*								
	N	非鉄金属										
	S	難削材		*	☆				第一選掛			
	Н	高硬度材		*				☆::	第二選択	5		
						ィンク	ř					
形番		RE	APMX	AH120	AH3225			W1	INSL	S	BS	
VMT040204PPER-MM		0.4	4	•	•			3.5	6.05	2.1	1	
/MT040208PPER-MM		0.8	4		•		П	3.5	6.05	2.1	0.6	T



■標準切削条件

ISO	被肖	小材	硬さ	選択基準	材種	切削速度 <i>V</i> c (m/min)	刃当り送り <i>f</i> z (mm/t)
	低炭 S15C, SS		- 200 HB	第一選択	AH3225	100 - 300	0.05 - 0.12
P	炭素鋼、 S55C, SCM		- 300 HB	第一選択	AH3225	100 - 250	0.05 - 0.12
	プリハー NAK80, F		30 - 40 HRC	第一選択	AH3225	100 - 200	0.05 - 0.1
M	ステン SUS30		-	第一選択	AH3225	80 - 180	0.05 - 0.1
K	ねずみ FC250		150 - 250 HB	第一選択	AH120	100 - 300	0.05 - 0.12
	ダクタイ FCD400, FC		150 - 250 HB	第一選択	AH120	100 - 250	0.05 - 0.12
S	チタン Ti-6Al-4		-	第一選択	AH3225	20 - 60	0.04 - 0.07
	耐熱 インコネル		-	第一選択	AH120	20 - 40	0.04 - 0.07
н	高硬度鋼	SKD61 など	40 - 50 HRC	第一選択	AH120	50 - 150	0.04 - 0.07
"	四以以299	SKD11 など	50 - 60 HRC	第一選択	AH120	40 - 70	0.04 - 0.07

■■加工形態

		有効刃長	最大 傾斜角	最大突込み 深さ	一		1工穴径	繰り広げ時 最大切削幅
形 番	DC	APMX	RMPX	Α	øD1	øD2	øD3*	<i>a</i> e
EPAV04M006C06.0R01	6	4	0.4	0.03	9.3	11.6	9.9	5.5
EPAV04M008C08.0R02	8	4	0.5	0.04	12.7	15.6	13.6	7.5
EPAV04M008C08.0R02L	8	4	0.5	0.04	12.7	15.6	13.6	7.5
EPAV04M010C10.0R02	10	4	4.1	0.4	15.3	19.6	17.5	9.5
EPAV04M010C10.0R03	10	4	1.7	0.2	16.1	19.6	17.5	9.5
EPAV04M010C10.0R02L	10	4	4.1	0.4	16.1	19.6	17.5	9.5
EPAV04M012C12.0R03	12	4	2.7	0.4	19.3	23.6	21.5	11.5
EPAV04M012C12.0R04	12	4	1.3	0.2	20.1	23.6	21.5	11.5
EPAV04M012C12.0R03L	12	4	2.7	0.4	19.3	23.6	21.5	11.5
EPAV04M016C16.0R04	16	4	2	0.4	27.2	31.6	29.5	15.5
EPAV04M016C16.0R05	16	4	2	0.4	27.2	31.6	29.5	15.5
EPAV04M016C16.0R04L	16	4	2	0.4	27.2	31.6	29.5	15.5

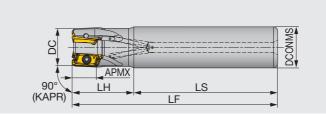
^{*} 平底の止まり穴

インサートを組み付ける際、図のようにボディとインサートの間に 隙間がないことを確認してください。

刃当り送り: fz と切削幅: ae から切りくず厚みを算出

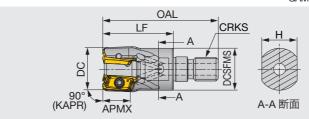
推奨する切りくず厚み

						切削的	畐 (%): <i>a</i> e	(mm) / 工	具径 : DC	(mm)					
刃当り送り fz (mm/t)	1%	2%	2.5%	3%	4%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50% -
0.03	0.006	0.008	0.009	0.01	0.012	0.013	0.018	0.021	0.024	0.026	0.027	0.029	0.029	0.03	0.03
0.05	0.01	0.014	0.016	0.017	0.02	0.022	0.03	0.036	0.04	0.043	0.046	0.048	0.049	0.05	0.05
0.08	0.016	0.022	0.025	0.027	0.031	0.035	0.048	0.057	0.064	0.069	0.073	0.076	0.078	0.08	0.08
0.1	0.02	0.028	0.031	0.034	0.039	0.044	0.06	0.071	0.08	0.087	0.092	0.095	0.098	0.099	0.1
0.12	0.024	0.034	0.037	0.041	0.047	0.052	0.072	0.086	0.096	0.104	0.11	0.114	0.118	0.119	0.12
0.15	0.03	0.042	0.047	0.051	0.059	0.065	0.09	0.107	0.12	0.13	0.137	0.143	0.147	0.149	0.15
0.18	0.036	0.05	0.056	0.061	0.071	0.078	0.108	0.129	0.144	0.156	0.165	0.172	0.176	0.179	0.18
0.2	0.04	0.056	0.062	0.068	0.078	0.087	0.12	0.143	0.16	0.173	0.183	0.191	0.196	0.199	0.2
0.22	0.044	0.062	0.069	0.075	0.086	0.096	0.132	0.157	0.176	0.191	0.202	0.21	0.216	0.219	0.22
0.25	0.05	0.07	0.078	0.085	0.098	0.109	0.15	0.179	0.2	0.217	0.229	0.238	0.245	0.249	0.25
0.28	0.056	0.078	0.087	0.096	0.11	0.122	0.168	0.2	0.224	0.242	0.257	0.267	0.274	0.279	0.28
0.3	0.06	0.084	0.094	0.102	0.118	0.131	0.18	0.214	0.24	0.26	0.275	0.286	0.294	0.298	0.3
0.4	0.08	0.112	0.125	0.136	0.157	0.174	0.24	0.286	0.32	0.346	0.367	0.382	0.392	0.398	0.4


カッタ

EPAV12

汎用直角肩加工用 柄付きカッタ

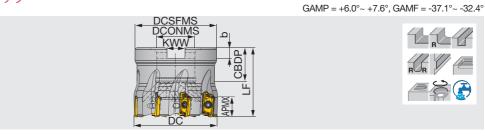

形 番	APMX	DC	CICT	DCONMS	LS	LH	LF	WT(kg)	エア穴	インサート
EPAV12M012C12.0R01	11.5	12	1	12	60	25	85	0.06	あり	AVM/GT12
EPAV12M016C16.0R02	11.5	16	2	16	60	25	85	0.12	あり	AVM/GT12
EPAV12M016C16.0R03	11.5	16	3	16	60	25	85	0.12	あり	AVM/GT12
EPAV12M016C16.0R02L	11.5	16	2	16	105	40	145	0.20	あり	AVM/GT12
EPAV12M020C20.0R03	11.5	20	3	20	70	30	100	0.22	あり	AVM/GT12
EPAV12M020C20.0R04	11.5	20	4	20	70	30	100	0.21	あり	AVM/GT12
EPAV12M020C20.0R02L	11.5	20	2	20	135	50	185	0.41	あり	AVM/GT12
EPAV12M025C25.0R04	11.5	25	4	25	80	35	115	0.38	あり	AVM/GT12
EPAV12M025C25.0R06	11.5	25	6	25	80	35	115	0.39	あり	AVM/GT12
EPAV12M025C25.0R03L	11.5	25	3	25	150	70	220	0.74	あり	AVM/GT12
EPAV12M032C32.0R06	11.5	32	6	32	80	40	120	0.68	あり	AVM/GT12
EPAV12M032C32.0R08	11.5	32	8	32	80	40	120	0.68	あり	AVM/GT12
EPAV12M032C32.0R03L	11.5	32	3	32	175	80	255	1.47	あり	AVM/GT12

HPAV12-M

汎用直角肩加工用カッタヘッド (タングフレックス)

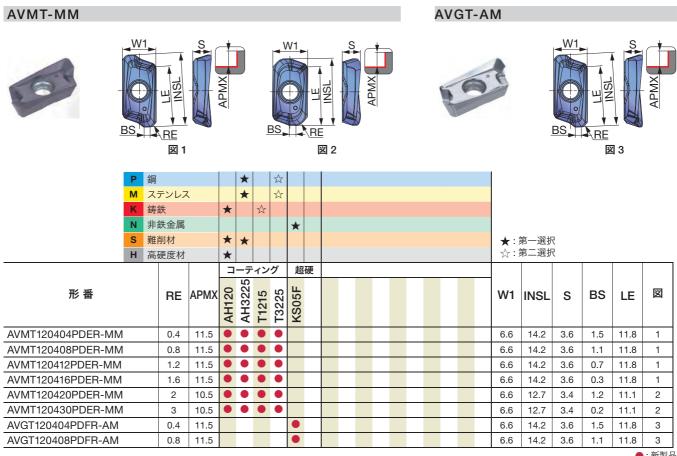
GAMP = $+6.0^{\circ} \sim +7.6^{\circ}$, GAMF = $-37.1^{\circ} \sim -32.4^{\circ}$

形 番	APMX	DC	CICT	OAL	LF	н	DCSFMS	CRKS	WT(kg)	エア穴	インサート
HPAV12M016M08R02	11.5	16	2	42	25	10	14.5	M8	0.03	あり	AVM/GT12
HPAV12M016M08R03	11.5	16	3	42	25	10	14.5	M8	0.03	あり	AVM/GT12
HPAV12M020M10R03	11.5	20	3	49	30	15	17.8	M10	0.06	あり	AVM/GT12
HPAV12M020M10R04	11.5	20	4	49	30	15	17.8	M10	0.05	あり	AVM/GT12
HPAV12M025M12R04	11.5	25	4	57	35	17	23	M12	0.1	あり	AVM/GT12
HPAV12M025M12R06	11.5	25	6	57	35	17	23	M12	0.1	あり	AVM/GT12
HPAV12M032M16R06	11.5	32	6	63	40	22	28.8	M16	0.21	あり	AVM/GT12
HPAV12M032M16R08	11.5	32	8	63	40	22	28.8	M16	0.21	あり	AVM/GT12
HPAV12M040M16R06	11.5	40	6	63	40	22	28.8	M16	0.25	あり	AVM/GT12
HPAV12M040M16R08	11.5	40	8	63	40	22	28.8	M16	0.24	あり	AVM/GT12


TUNGFÄEC

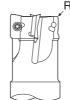
カッタ

TPAV12


汎用直角肩加工用 ボアタイプカッタ

形 番	APMX	DC	CICT	DCSFMS	DCONMS	CBDP	LF	KWW	b	WT(kg)	エア穴	インサート
TPAV12M050B22.0R08	11.5	50	8	47	22	20	40	10.4	6.3	0.37	あり	AVM/GT12
TPAV12M050B22.0R12	11.5	50	12	47	22	20	40	10.4	6.3	0.37	あり	AVM/GT12
TPAV12M063B22.0R08	11.5	63	8	47	22	20	40	10.4	6.3	0.52	あり	AVM/GT12
TPAV12M063B22.0R14	11.5	63	14	47	22	20	40	10.4	6.3	0.54	あり	AVM/GT12

インサート

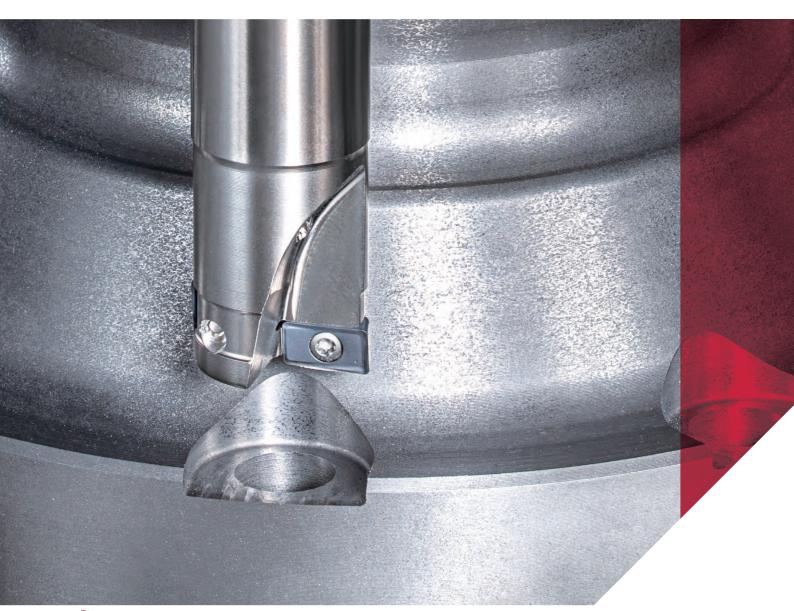


■標準切削条件

ISO	被削	划 材	硬さ	選択基準	材種	切削速度 <i>V</i> c (m/min)	刃当り送り <i>f</i> z (mm/t)
	低炭		- 200 HB	第一選択	AH3225	100 - 300	0.06 - 0.22
	S15C, SS	400 など	- 200 HB	耐摩耗性重視	T3225	200 - 400	0.06 - 0.18
P	炭素鋼、		- 300 HB	第一選択	AH3225	100 - 250	0.06 - 0.22
	S55C, SCN	<i>1</i> 440 など	- 300 HB	耐摩耗性重視	T3225	200 - 400	0.06 - 0.18
	プリハー		30 - 40 HRC	第一選択	AH3225	100 - 200	0.06 - 0.22
	NAK80, F	YX5 など	30 - 40 HRC	耐摩耗性重視	T3225	200 - 400	0.06 - 0.15
M	ステン SUS304, SU		-	第一選択	AH3225	80 - 180	0.07 - 0.2
	ねずみ		150 - 250 HB	第一選択	AH120	100 - 300	0.05 - 0.12
K	FC250, FC	2300 など	150 - 250 HB	耐摩耗性重視	T1215	200 - 400	0.05 - 0.18
	ダクタイ		150 - 250 HB	第一選択	AH120	100 - 250	0.05 - 0.12
	FCD400, FC	CD600 など	150 - 250 HB	耐摩耗性重視	T1215	150 - 300	0.05 - 0.18
N	アルミ Si < *		-	第一選択	KS05F	300 - 1500	0.05 - 0.32
	アルミ Si ≧ '		-	第一選択	KS05F	100 - 200	0.05 - 0.32
S	チタン Ti-6Al-4		- 40 HRC	第一選択	AH3225	20 - 60	0.04 - 0.15
3	耐熱 インコネル		- 40 HRC	第一選択	AH120	20 - 40	0.04 - 0.15
H	高硬度鋼	SKD61 など	40 - 50 HRC	第一選択	AH120	50 - 150	0.04 - 0.07
Ш	[P] IKT/交 IM	SKD11 など	50 - 60 HRC	第一選択	AH120	40 - 70	0.04 - 0.07

大きいコーナ RE のインサート使用時の注意

コーナ半径 REが2以上のインサートを使用する場合は 本体R部の修正が必要です (EPAV12, TPAV12, HPAV12)。



コーナ半径 RE (mm)	本体Rの追加工寸法 (mm)
0.4 - 1.6	追加工不要
2 - 3	2

最高の汎用性を持つ 真のオールラウンドカッタ

ADD 穴あけから直角肩加工および座繰り加工まで対応可能!

- 外周刃と底面刃を1インサートに2コーナずつ 搭載。4コーナ仕様で経済的
- ネガタイプインサートで高いインサート強度
- ヘリカル穴あけで工具径 +2 mm 以上のすべての フラット穴が加工可能
- 座繰り加工に最適

ラインナップ

- LXMU08-MM

インサート

APMX = 7 mm (ZEFP = 1), 4 mm (ZEFP = 2)RE = 0.4 mm

- LXMU10-MM

APMX = 9 mm (ZEFP = 1), 4 mm (ZEFP = 2)RE = 0.8 mm

- LXMU12-MM

APMX = 11 mm (ZEFP = 1), 6 mm (ZEFP = 2)RE = 0.8 mm

チップブレーカ

- MM 形: 低抵抗な汎用ブレーカ

材種

- AH3225: 耐摩耗性と耐欠損性に優れた材種で、 鋼およびステンレス加工に最適
- AH8015: 耐摩耗性に優れた材種で、高硬度材 加工に最適
- AH120: 耐摩耗性および耐チッピング性に優れ た材種で、鋳鉄加工に最適

カッタボディ

シャンクタイプ:

- **EVLX08...** (ショートタイプ)

 $DC = \emptyset 16 \text{ mm}$

- EVLX08**L (ロングタイプ)

DC = Ø16, Ø17 mm

- **EVLX10...** (ショートタイプ)

 $DC = \emptyset 20 \text{ mm}$

- **EVLX10****L (ロングタイプ)

DC = Ø20, Ø21 mm

- **EVLX12...** (ショートタイプ)

 $DC = \emptyset 25 \text{ mm}$

- EVLX12**L (ロングタイプ)

DC = Ø25, Ø26 mm

モジュラタイプ:

- HVLX08...

 $DC = \emptyset 16 \text{ mm}$

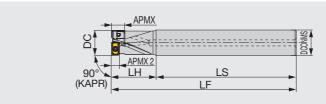
- HVLX10...

 $DC = \emptyset 20 \text{ mm}$

- HVLX12...

 $DC = \emptyset 25 \text{ mm}$

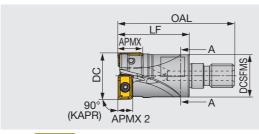
この製品の 詳しい情報は こちらから。


■ カッタ

EVLX08/10/12

中心刃付き多機能カッタ

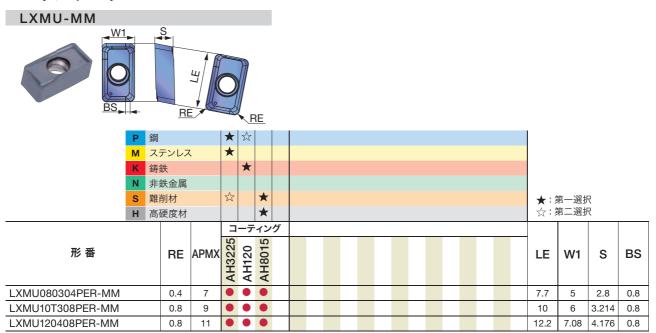
GAMP: 中心刃 -2.6° ~ -4.4°, 外周刃 +6.1° ~ +7.1° GAMF: 中心刃 +0.2° ~ +1.3°, 外周刃 -15.7° ~ -15°


形 番	APMX	APMX 2	DC	CICT	DCONMS	LS	LH	LF	WT(kg)	エア穴	インサート
EVLX08M016C16.0R02	7	4	16	2	16	100	30	130	0.18	あり	LXMU08
EVLX08M016C16.0R02L	7	4	16	2	16	130	50	180	0.25	あり	LXMU08
EVLX08M017C16.0R02L	7	4	17	2	16	155	25	180	0.26	あり	LXMU08
EVLX10M020C20.0R02	9	4	20	2	20	110	35	145	0.31	あり	LXMU10
EVLX10M020C20.0R02L	9	4	20	2	20	130	60	190	0.41	あり	LXMU10
EVLX10M021C20.0R02L	9	4	21	2	20	160	30	190	0.42	あり	LXMU10
EVLX12M025C25.0R02	11	6	25	2	25	105	45	150	0.51	あり	LXMU12
EVLX12M025C25.0R02L	11	6	25	2	25	150	75	225	0.77	あり	LXMU12
EVLX12M026C25.0R02L	11	6	26	2	25	190	35	225	0.8	あり	LXMU12

HVLX08/10/12-M

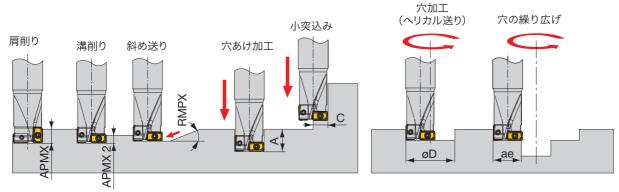
中心刃付き多機能カッタ モジュラヘッド (タングフレックス)

GAMP: 中心刃 -2.6° ~ -4.4°, 外周刃 +6.1° ~ +7.1° GAMF: 中心刃 +0.2° ~ +1.3°, 外周刃 -15.7° ~ -15°



形 番	APMX	APMX 2	DC	CICT	OAL	LF	Н	DCSFMS	CRKS	WT(kg)	エア穴	インサート
HVLX08M016M08R02	7	4	16	2	42	25	10	14.5	M8	0.03	あり	LXMU08
HVLX10M020M10R02	9	4	20	2	49	30	15	17.8	M10	0.05	あり	LXMU10
HVLX12M025M12R02	11	6	25	2	57	35	17	23	M12	0.1	あり	LXMU12

インサート

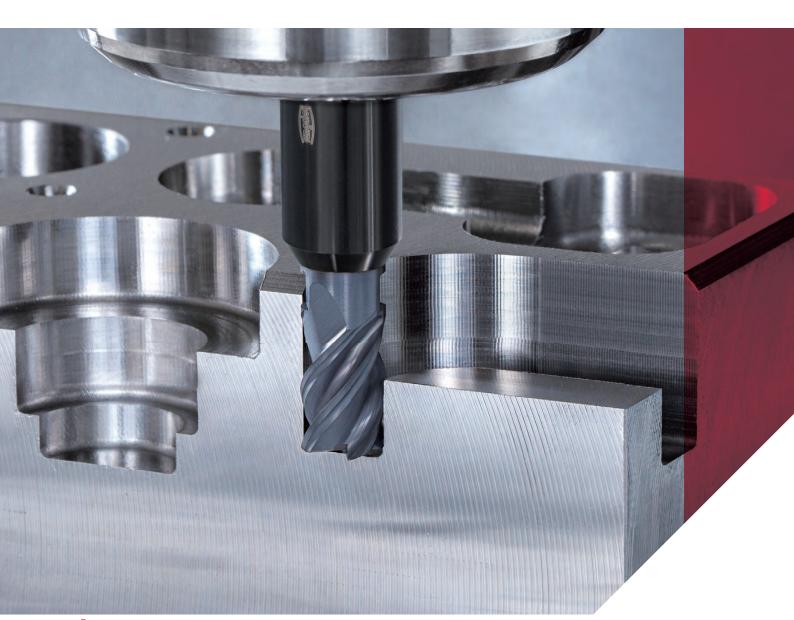


■標準切削条件

							刃当	áり送り : f z (mr	n/t)		
ISO	被貨	削 材	硬さ	選択基準	材種	切削速度	穴あけ時	横送り/	ヘリカル時		
				選択 		Vc (m/min)		08	10 / 12		
		素鋼 S400 など	- 200 HB	第一選択	AH3225	100 - 300	0.03 - 0.08	0.05 - 0.25	0.05 - 0.3		
P		. 合金鋼 M440 など	- 300 HB	第一選択	AH3225	100 - 250	0.03 - 0.08	0.05 - 0.25	0.05 - 0.3		
		プリハードン鋼 NAK80, PX5 など		第一選択	AH3225	100 - 200	0.03 - 0.06	0.05 - 0.2	0.05 - 0.25		
M		ステンレス鋼 SUS304, SUS316 など		第一選択	AH3225	80 - 180	0.03 - 0.08	0.05 - 0.2	0.05 - 0.22		
K		み鋳鉄 C300 など	150 - 250 HB	第一選択	AH120	100 - 300	0.03 - 0.1	0.05 - 0.25	0.05 - 0.3		
		ダクタイル鋳鉄 FCD400, FCD600 など		第一選択	AH120	100 - 250	0.03 - 0.08	0.05 - 0.2	0.05 - 0.25		
S		チタン合金 Ti-6AI-4V など				第一選択	AH3225	20 - 60	0.03 - 0.06	0.04 - 0.15	0.04 - 0.15
3		l合金 ル718 など	-	第一選択	AH8015	20 - 40	0.03 - 0.06	0.04 - 0.15	0.04 - 0.15		
H	高硬度鋼	SKD61 など	40 - 50 HRC	第一選択	AH8015	50 - 150	0.03 - 0.05	0.04 - 0.15	0.04 - 0.15		
ш	同议及剩	SKD11 など	50 - 60 HRC	第一選択	AH8015	40 - 70	0.03 - 0.05	0.04 - 0.15	0.04 - 0.15		

^{※ &}quot;APMX 2" を超える切込みで使用する際は、1 枚刃の送りで設定して下さい。

■加工形態


		有效	有効刃長		最大 突き加工幅	最大 傾斜角		加工 り、平穴底)		加工 ル送り)	繰り広げ時 最大切削幅
形 番	DC	APMX	APMX 2	Α	С	RMPX	øDmin	øDmax	øDmin	øDmax	ae
E/HVLX08M016	16	7	4	12	8	90°	17	30.75	16	31.75	14
EVLX08M017	17	7	4	12	8.5	90°	19	32.75	17	33.75	15
E/HVLX10M020	20	9	4	15	10	90°	22	37.95	20	39.15	18
EVLX10M021	21	9	4	15	10.5	90°	23.35	39.95	21	40.95	19
E/HVLX12M025	25	11	6	18.5	12.5	90°	26.65	47.85	25	48.95	23
FVI X12M026	26	11	6	18.5	13	90°	28 65	49 85	26	50.95	24

[※]ステップ・ドウェル無しで加工できる深さ上限は 5 mm です。 これ以上の深さを穴あけ加工する際はステップないしドウェルを行ってください。

エンドミル加工

13,000 通り以上の 組合せ

ADD 豊富なヘッドのラインナップにより、あらゆる加工形態で 高い生産性を実現

- 再現性を実現。さらに工具交換時間を劇的に短
- スクエア、ボール、高送り、溝加工から、面取 り、穴あけまで、幅広い加工形態に対応するヘッ ドを豊富にラインナップ
- シンプル&高精度な接続機構で、高い刃先位置 シャンク径、長さ、材質など、シャンクも幅広く 設定。最適ツーリングの選定が可能

ラインナップ

ヘッド

- スクエア: DC = Ø5 - Ø32 mm

- 平面加工: DC = Ø12 - Ø25 mm

- 高送り: DCX = Ø12 - Ø16 mm

- ボール: DC = Ø5 - Ø25 mm

- バレル: DC = Ø8 - Ø16 mm

- ブルノーズ: DC = Ø10 - Ø16 mm

- レンズ:DC = Ø8 - Ø16 mm

- 面取り: DC = Ø10 - Ø20 mm

- 面取りスポットドリル: DC = Ø8 - Ø16 mm

- センター穴: DC = Ø1.07 - Ø6.41 mm

材種

- AH715: 耐摩耗性に優れた材種で、あらゆる被 削材に対応可能

- AH725: あらゆる被削材に対応可能

- AH750: 耐欠損性に優れ、高硬度材での高能 率加工に威力を発揮

- KS15F: 鉄金属加工に最適

シャンク

- 円筒シャンク, ストレートネック

 $DCONMS = \emptyset8 - \emptyset32 mm$

- ウェルドンシャンク、ストレートネック

DCONMS = Ø12 - Ø25 mm

- 円筒シャンク, テーパネック

DCONMS = Ø8 - Ø40 mm

- 高剛性シャンク (円筒)

DCONMS = Ø6 - Ø40 mm

- 溝加工用ストレートシャンク(円筒)

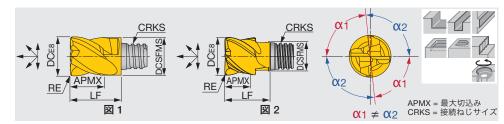
DCONMS = Ø6 - Ø16 mm

- TungFlex (タング・フレックス) アダプタ CRKSMS = M8 - M12

- ER コレットアダプタ

SS = ER11 - ER16

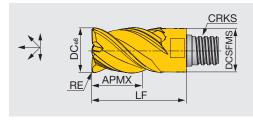
上記新シリーズ 以外の情報は こちらから。


INGMEISTER

ヘッド

VEH...

4枚刃、荒~仕上げ加工用、不等リード・不等分割


形番	AH715	AH725	NOF	FHA	DC	DCSFMS	APMX	RE	CRKS	LF	スパナ	トルク*	义
VEH080L05.0R05I04S05		•	4	41° - 45°	8	7.7	5	0.5	S05	10	KEYV-S05	7	1
VEH080L05.0R10I04S05		•	4	41° - 45°	8	7.7	5	1	S05	10	KEYV-S05	7	1
VEH100L07.0R10I04S05	•		4	41° - 45°	10	7.7	7	1	S05	12.8	KEYV-S05	7	2
VEH100L07.0R05I04S06		•	4	41° - 45°	10	9.7	7	0.5	S06	13	KEYV-S06	10	1
VEH100L07.0R10I04S06		•	4	41° - 45°	10	9.7	7	1	S06	13	KEYV-S06	10	1
VEH120L09.0R10I04S06			4	41° - 45°	12	9.3	9	1	S06	14.3	KEYV-S06	10	2
VEH120L09.0R05I04S08		•	4	41° - 45°	12	11.7	9	0.5	S08	16.5	KEYV-S08	15	1
VEH120L09.0R10I04S08		•	4	41° - 45°	12	11.7	9	1	S08	16.5	KEYV-S08	15	1
VEH160L12.0R10I04S08	•		4	41° - 45°	16	11.7	12	1	S08	20	KEYV-S08	15	2
VEH160L12.0R05I04S10		•	4	41° - 45°	16	15.3	12	0.5	S10	20.5	KEYV-S10	28	1
VEH160L12.0R10I04S10		•	4	41° - 45°	16	15.3	12	1	S10	20.5	KEYV-S10	28	1
VEH200L15.0R05I04S12		•	4	41° - 45°	20	18.3	15	0.5	S12	25.5	KEYV-S12	28	1
VEH200L15.0R10I04S12		•	4	41° - 45°	20	18.3	15	1	S12	25.5	KEYV-S12	28	1

^{*} トルク:推奨締付けトルク (N·m) 1 ケース 2 個入り

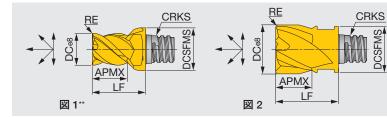
●: 新製品 ●: 設定アイテム

4枚刃、荒~仕上げ加工用、長刃長、不等リード・不等分割

APMX = 最大切込み CRKS = 接続ねじサイズ

形 番	AH715	NOF	FHA	DC	DCSFMS	APMX	RE	CRKS	LF	スパナ	トルク*
VEH080L12.0R05I04S05	•	4	41° - 45°	8	7.7	12	0.5	S05	18	KEYV-S05	7
VEH080L12.0R10I04S05	•	4	41° - 45°	8	7.7	12	1	S05	18	KEYV-S05	7
VEH100L15.0R05I04S06	•	4	41° - 45°	10	9.7	15	0.5	S06	22	KEYV-S06	10
VEH100L15.0R10I04S06	•	4	41° - 45°	10	9.7	15	1	S06	22	KEYV-S06	10
VEH120L18.0R05I04S08	•	4	41° - 45°	12	11.7	18	0.5	S08	27	KEYV-S08	15
VEH120L18.0R10I04S08	•	4	41° - 45°	12	11.7	18	1	S08	27	KEYV-S08	15
VEH160L24.0R05I04S10	•	4	41° - 45°	16	15.3	24	0.5	S10	33.5	KEYV-S10	28
VEH160L24.0R10I04S10	•	4	41° - 45°	16	15.3	24	1	S10	33.5	KEYV-S10	28
VEH200L30.0R05I04S12	•	4	41° - 45°	20	18.45	30	0.5	S12	41	KEYV-S12	28
VEH200L30.0R10I04S12	•	4	41° - 45°	20	18.45	30	1	S12	41	KEYV-S12	28
VEH250L37.0R05I04S15	•	4	41° - 45°	25	23.9	37	0.5	S15	52.5	KEYV-W20	40
VEH250L37.0R10I04S15	•	4	41° - 45°	25	23.9	37	1	S15	52.5	KEYV-W20	40
VEH320L38.0R00I04S21	•	4	41° - 45°	32	30	38	-	S21	55	KS-24	110
VEH320L38.0R10I04S21		4	41° - 45°	32	30	38	1	S21	55	KS-24	110

* トルク:推奨締付けトルク (N·m) VEH080 ~ VEH160: 1 ケース 2 個入り VEH200 ~ VEH320: 1 ケース 1 個入り

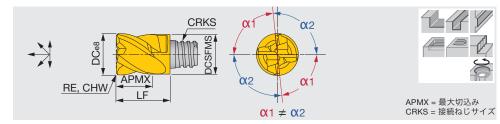

●: 新製品 ●: 設定アイテム

VEH...

4枚刃、荒~仕上げ加工用、汎用

DCSFMS

形 番	AH715 AH725	NOF	FHA	DC	DCSFMS	APMX	RE	CRKS	LF	スパナ	トルク*	义
VEE050L04.0R05-04S04	•	4	45°	5	6	4	0.5	S04	8.5	KEYV-S05	4	1
VEE060L04.0R05-04S04	•	4	45°	6	5.8	4	0.5	S04	8.5	KEYV-S05	4	2
VEE060L05.0R00-04S05	• •	4	45°	6	8	5	-	S05	10	KEYV-S05	7	1
VEE080L05.0R00-04S05	•	4	45°	8	7.7	5	-	S05	10	KEYV-S05	7	2
VED080L05.0R05-04S05	•	4	30°	8	7.7	5	0.5	S05	10	KEYV-S05	7	2
VED080L05.0R10-04S05	•	4	30°	8	7.7	5	1	S05	10	KEYV-S05	7	2
VED080L05.0R15-04S05	•	4	30°	8	7.7	5	1.5	S05	10	KEYV-S05	7	2
VEE100L07.0R00-04S06	•	4	45°	10	9.7	7	-	S06	13	KEYV-S06	10	2
VED100L07.0R05-04S06	•	4	30°	10	9.7	7	0.5	S06	13	KEYV-S06	10	2
VEE100L07.0R05-04S06	•	4	45°	10	9.7	7	0.5	S06	13	KEYV-S06	10	2
VED100L07.0R10-04S06	•	4	30°	10	9.7	7	1	S06	13	KEYV-S06	10	2
VEE100L07.0R10-04S06	•	4	45°	10	9.7	7	1	S06	13	KEYV-S06	10	2
VEE120L09.0R00-04S08	•	4	45°	12	11.7	9	-	S08	16.5	KEYV-S08	15	2
VED120L09.0R05-04S08	•	4	30°	12	11.7	9	0.5	S08	16.5	KEYV-S08	15	2
VEE120L09.0R05-04S08	•	4	45°	12	11.7	9	0.5	S08	16.5	KEYV-S08	15	2
VED120L09.0R10-04S08	•	4	30°	12	11.7	9	1	S08	16.5	KEYV-S08	15	2
VEE120L09.0R10-04S08	•	4	45°	12	11.7	9	1	S08	16.5	KEYV-S08	15	2
VEE160L12.0R00-04S10	• •	4	45°	16	15.3	12	-	S10	20.5	KEYV-S10	28	2
VED160L12.0R05-04S10	• •	4	30°	16	15.3	12	0.5	S10	20.5	KEYV-S10	28	2
VEE160L12.0R05-04S10	•	4	45°	16	15.3	12	0.5	S10	20.5	KEYV-S10	28	2
VED160L12.0R10-04S10	•	4	30°	16	15.3	12	1	S10	20.5	KEYV-S10	28	2
VEE160L12.0R10-04S10	•	4	45°	16	15.3	12	1	S10	20.5	KEYV-S10	28	2
VED160L12.0R15-04S10	•	4	30°	16	15.3	12	1.5	S10	20.5	KEYV-S10	28	2
VEE160L12.0R15-04S10	•	4	45°	16	15.3	12	1.5	S10	20.5	KEYV-S10	28	2
VED160L12.0R20-04S10	•	4	30°	16	15.3	12	2	S10	20.5	KEYV-S10	28	2
VEE160L12.0R20-04S10	•	4	45°	16	15.3	12	2	S10	20.5	KEYV-S10	28	2
VED160L12.0R30-04S10	•	4	30°	16	15.3	12	3	S10	20.5	KEYV-S10	28	2
VEE160L12.0R30-04S10	•	4	45°	16	15.3	12	3	S10	20.5	KEYV-S10	28	2
VED160L12.0R40-04S10	•	4	30°	16	15.3	12	4	S10	20.5	KEYV-S10	28	2
VEE160L12.0R40-04S10	•	4	45°	16	15.3	12	4	S10	20.5	KEYV-S10	28	2
VEE200L15.0R00-04S12	•	4	45°	20	18.3	15	-	S12	25.5	KEYV-S12	28	2
VED200L15.0R05-04S12	•	4	30°	20	18.3	15	0.5	S12	25.5	KEYV-S12	28	2
VED200L15.0R10-04S12	• •	4	30°	20	18.3	15	1	S12	25.5	KEYV-S12	28	2
VED200L15.0R20-04S12	•	4	30°	20	18.3	15	2	S12	25.5	KEYV-S12	28	2
VED200L15.0R30-04S12	•	4	30°	20	18.3	15	3	S12	25.5	KEYV-S12	28	2

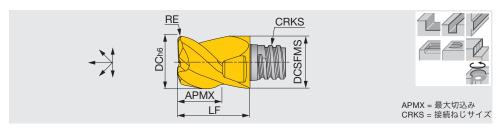

●:新製品 ●:設定アイテム

^{*} トルク:推奨締付けトルク (N·m)
** 図 1: 工具径に対し取付け径が大きいため、加工時の干渉にご注意ください。
1 ケース 2 個入り

VEE**-I...

4枚刃、荒~仕上げ加工用、不等分割

形 番	AH715 AH725	NOF	FHA	DC	DCSFMS	APMX	RE	CHW	CRKS	LF	スパナ	トルク*
VEE080L05.0C30I04S05	•	4	38°	8	7.7	5	-	0.3	S05	10	KEYV-S05	7
VEE100L07.0C40I04S06	•	4	38°	10	9.7	7	-	0.4	S06	13	KEYV-S06	10
VEE120L09.0C50I04S08	•	4	38°	12	11.7	9	-	0.5	S08	16.5	KEYV-S08	15
VEE160L12.0C60I04S10	• •	4	38°	16	15.3	12	-	0.6	S10	20.5	KEYV-S10	28
VEE200L15.0C60I04S12	•	4	38°	20	18.3	15	-	0.6	S12	25.5	KEYV-S12	28
VEE250L22.0C60I04S15	•	4	38°	25	23.9	22	-	0.6	S15	37	KEYV-W20	40
VEE250L22.0R00I04S15	•	4	38°	25	23.9	22	-	-	S15	37	KEYV-W20	40
VEE250L22.0R05I04S15	•	4	38°	25	23.9	22	0.5	-	S15	37	KEYV-W20	40
VEE250L22.0R10I04S15	•	4	38°	25	23.9	22	1	-	S15	37	KEYV-W20	40
VEE250L22.0R20I04S15	•	4	38°	25	23.9	22	2	-	S15	37	KEYV-W20	40
VEE250L22.0R30I04S15	•	4	38°	25	23.9	22	3	-	S15	37	KEYV-W20	40


* トルク:推奨締付けトルク (N·m) VEE080 ~ VEE200: 1ケース2個入り VEE250: 1ケース1個入り

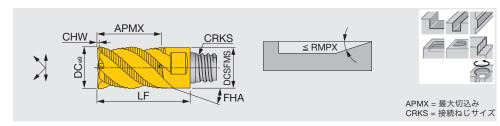
●:新製品 ●:設定アイテム

VEE**-03...

3枚刃、荒~仕上げ加工用、汎用、キー溝加工用

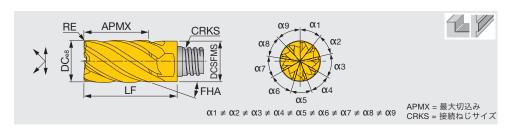
形 番	AH715	AH725	NOF	FHA	DC	DCSFMS	APMX	RE	CRKS	LF	スパナ	トルク*
VEE077L04.0R02-03S05		•	3	38°	7.7	7.7	4	0.2	S05	10	KEYV-S05	7
VEE080L05.0R00-03S05			3	45°	8	7.7	5	-	S05	10	KEYV-S05	7
VEE097L05.0R03-03S06		•	3	38°	9.7	9.7	5	0.3	S06	13	KEYV-S06	10
VEE100L07.0R00-03S06		•	3	45°	10	9.7	7	-	S06	13	KEYV-S06	10
VEE117L07.0R03-03S08	•	•	3	38°	11.7	11.7	7	0.3	S08	16.5	KEYV-S08	15
VEE120L09.0R00-03S08		•	3	45°	12	11.7	9	-	S08	16.5	KEYV-S08	15
VEE157L08.0R03-03S10	•	•	3	38°	15.7	15.3	8	0.3	S10	20.5	KEYV-S10	28
VEE197L12.0R04-03S12		•	3	38°	19.7	18.3	12	0.4	S12	25.5	KEYV-S12	28

* トルク: 推奨締付けトルク (N·m)


1ケース2個入り

●:新製品 ●:設定アイテム

4, 5, 6枚刃、荒加工用、長刃長、波刃形状


形 番	AH725	NOF	FHA	DC	DCSFMS	APMX	CHW	CRKS	LF	RMPX	スパナ	トルク *
VED080L12.0C25R04S05	•	4	47°	8	7.7	12	0.25	S05	18	5°	KEYV-S05	7
VED100L15.0C30R04S06		4	47°	10	9.6	15	0.3	S06	22	5°	KEYV-S06	10
VED120L18.0C35R04S08	•	4	47°	12	11.7	18	0.35	S08	27	5°	KEYV-S08	15
VED160L24.0C40R05S10		5	47°	16	15.3	24	0.4	S10	33.5	5°	KEYV-S10	28
VED200L30.0C40R06S12	•	6	47°	20	18.45	30	0.4	S12	41	3°	KEYV-S12	28
VED250L37.0C50I06S15		6	47°	25	23.9	37	0.5	S15	52.5	3°	KEYV-W20	40

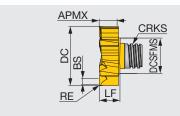
*トルク:推奨締付けトルク (N·m) VED080 ~ VED160: 1 ケース 2 個入り VED200, VED250: 1 ケース 1 個入り ●:新製品

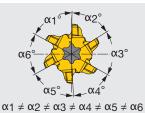
VED**-07/09...

7,9枚刃、荒~仕上げ加工用、長刃長、不等リード・不等分割、低切削幅加工用

形 番	AH725	NOF	FHA	DC	DCSFMS	APMX	RE	CRKS	LF	スパナ	トルク *
VED080L12.0R05I07S05	•	7	34° - 40°	8	7.7	12	0.5	S05	18	KEYV-S05	7
VED100L15.0R05I07S06		7	34° - 40°	10	9.6	15	0.5	S06	22	KEYV-S06	10
VED120L18.0R05I07S08	•	7	34° - 40°	12	11.7	18	0.5	S08	27	KEYV-S08	15
VED160L24.0R08I09S10		9	34° - 40°	16	15.3	24	0.8	S10	33.5	KEYV-S10	28
VED200L30.0R10l09S12	•	9	34° - 40°	20	18.45	30	1	S12	41	KEYV-S12	28
VED250L37.0R10I09S15		9	34° - 40°	25	23.9	37	1	S15	52.5	KEYV-W20	40

* トルク:推奨締付けトルク (N·m) VED080 ~ VED160: 1 ケース 2 個入り VED200, VED250: 1 ケース 1 個入り


●:新製品

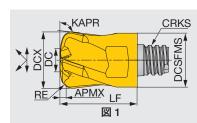

JNGMEISTER

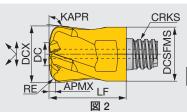
VFM...

6枚刃、荒~仕上げ加工用、平面加工用

APMX = 最大切込み CRKS = 接続ねじサイズ

形 番	AH715	NOF	FHA	DC	DCSFMS	APMX	RE	BS	CRKS	LF	スパナ	トルク*
VFM120L03.6R02I06S05	•	6	10°	12	7.7	3.6	0.2	1.2	S05	4.4	KEYV-T20	7
VFM160L04.8R04I06S06	•	6	10°	16	9.7	4.8	0.4	2	S06	5.6	KEYV-T25	10
VFM200L06.0R04I06S08	•	6	10°	20	11.7	6	0.4	2	S08	7	KEYV-T40L	15
VEM250L07 5R04I06S10		6	10°	25	15.3	7.5	0.4	2	S10	8 55	KEYV-T50I	28

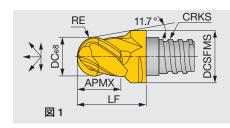

^{*}トルク:推奨締付けトルク (N·m) 1 ケース 2 個入り

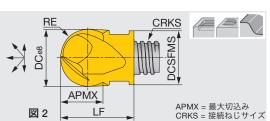

●:新製品 ●:設定アイテム

VFX**-04/06...

4,6枚刃、荒加工用、油穴付き(2アイテムは油穴なし)

形 番	AH715 AH725 AH7	50 NOF	FHA	DCX	DC	DCSFMS	APMX	RE	KAPR	CRKS	LF	RMPX	スパナ	トルク *	义
VFX120L0.60R18E04S08	•	4	20°	12	4.8	11.5	0.6	1.8	97°	S08	16.5	5°	KEYV-S08	15	2
VFX120L0.60R18H04S08	•	4	20°	12	4.8	11.5	0.6	1.8	97°	S08	16.5	5°	KEYV-S08	15	1
VFX120L0.65R12E06S08	•	6	20°	12	6.38	11.5	0.65	1.2	97°	S08	16.5	3°	KEYV-S08	15	2
VFX160L0.80R22E04S10	•	4	20°	16	5.6	15.4	0.8	2.2	97°	S10	20.5	5°	KEYV-S10	28	2
VFX160L0.80R22H04S10	•	4	20°	16	5.6	15.4	0.8	2.2	97°	S10	20.5	5°	KEYV-S10	28	1
VFX160L1.05R20E06S10	•	6	20°	16	7	15.4	1.05	2	97°	S10	20.5	3°	KEYV-S10	28	2


ステンレス鋼などの切りくずが溶着しやすい被削材での溝加工は推奨しません。 最大切削幅 ae < 0.4D。 *トルク:推奨締付けトルク (N·m)


●:新製品 ●: 設定アイテム

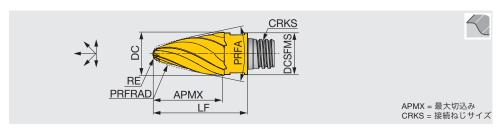
VBD**-BG-04..., VBE**-BG-04...

4枚刃、荒~仕上げ加工用、ねじれ切れ刃

形 番	AH715 AH725	NOF	FHA	DC	DCSFMS	APMX	RE	CRKS	LF	スパナ	トルク*	义
VBE050L04.0-BG-04S04	•	4	38°	5	6	4	2.487(1)	S04	8.5	KEYV-S05	4	1
VBE060L04.0-BG-04S04	•	4	38°	6	5.8	4	2.987(1)	S04	8.5	KEYV-S05	4	2
VBE060L05.5-BG-04S05	•	4	38°	6	8	5.5	2.987(1)	S05	10	KEYV-S05	7	1
VBD080L05.0-BG-04S05	• •	4	30°	8	7.7	5	3.982(1)	S05	10	KEYV-S05	7	2
VBD100L07.0-BG-04S06	• •	4	30°	10	9.7	7	4.982(1)	S06	13	KEYV-S06	10	2
VBD120L09.0-BG-04S08	•	4	30°	12	11.7	9	5.978(2)	S08	16.5	KEYV-S08	15	2
VBD160L12.0-BG-04S10	• •	4	30°	16	15.3	12	7.978(2)	S10	20.5	KEYV-S10	28	2
VBD200L15.0-BG-04S12	•	4	30°	20	18.3	15	9.972(2)	S12	25.5	KEYV-S12	28	2
VBD250L22.0-BG-04S15	•	4	30°	25	23.9	22	12.470(3)	S15	37	KEYV-W20	40	2

R 公差: (1) \pm 0.01 (2) \pm 0.012 (3) \pm 0.02 *トルク: 推奨締付トルク(N·m) VBE060/VBD080 ~ VBD200: 1ケース2個入り

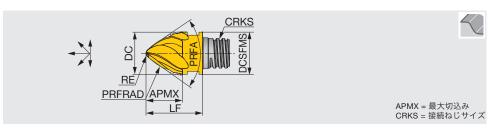
VBD250: 1ケース1個入り


¹ケース2個入り

VBO...

4,5枚刃、中仕上げ~仕上げ加工用、ロングタイプ、高能率倣い加工用

形 番	AH715	NOF	FHA	DC	DCSFMS	APMX	RE	PRFRAD	PRFA	CRKS	LF	スパナ	トルク*
VBO080L12.0R900-4S05		4	30°	8	7.7	12	1	90	33.6°	S05	18	KEYV-S05	7
VBO100L15.0R850-5S06		5	30°	10	9.7	15	2	85	27.3°	S06	22	KEYV-S06	10
VBO120L19.0R800-5S08	•	5	30°	12	11.7	19	2	80	29.3°	S08	27	KEYV-S08	15
VBO160L25.0R750-5S10	•	5	30°	16	15.3	25	3	75	26.7°	S10	33.5	KEYV-S10	28

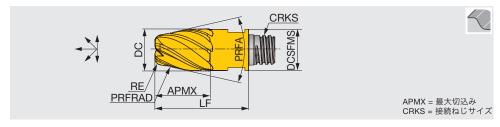

^{*} トルク:推奨締付けトルク (N·m) 1 ケース 2 個入り

●:新製品 ●:設定アイテム

VBO...

4枚刃、中仕上げ~仕上げ加工用、ショートタイプ、高能率倣い加工用

形 番	AH715	NOF	FHA	DC	DCSFMS	APMX	RE	PRFRAD	PRFA	CRKS	LF	スパナ	トルク*
VBO100L08.0R250-4S06	•	4	30°	10	9.7	8	8.0	25	70.8°	S06	13	KEYV-S06	10
VBO120L09.0R300-4S08		4	30°	12	11.7	9	1.2	30	71.6°	S08	16.5	KEYV-S08	15
VBO160L13.0R400-4S10	•	4	30°	16	15.3	13	1.6	40	70.3°	S10	20.5	KEYV-S10	28


^{*}トルク:推奨締付けトルク (N·m)

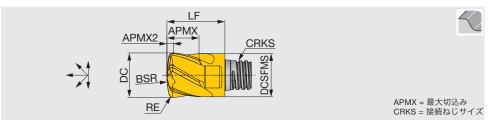
●: 設定アイテム

VBN...

6枚刃、中仕上げ~仕上げ加工用、高能率倣い加工用

形 番	AH715	NOF	FHA	DC	DCSFMS	APMX	RE	PRFRAD	PRFA	CRKS	LF	スパナ	トルク*
VBN100L13.0R450-6S06	•	6	35°	10	9.7	13	1.5	45	15.1°	S06	22	KEYV-S06	10
VBN120L15.0R500-6S08		6	35°	12	11.7	15	2	50	15.1°	S08	27	KEYV-S08	15
VBN160L18.0R600-6S10		6	35°	16	15.3	18	2	60	15.1°	S10	33.5	KEYV-S10	28

^{*} トルク:推奨締付けトルク (N·m) 1 ケース 2 個入り

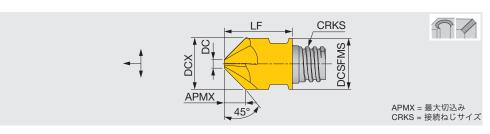

●: 設定アイテム

¹ケース2個入り

VBL...

6枚刃、中仕上げ~仕上げ加工用、高能率倣い加工用

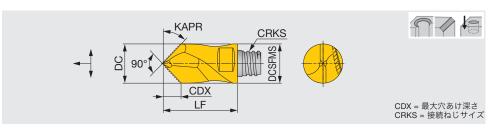
形番	AH715	NOF	FHA	DC	DCSFMS	APMX	APMX2	RE	BSR	CRKS	LF	スパナ	トルク*
VBL080L0.90R160-6S05		6	30°	8	7.7	5.5	0.9	0.5	16	S05	10	KEYV-S05	7
VBL100L1.40R200-6S06	•	6	30°	10	9.7	7.5	1.42	1	20	S06	13	KEYV-S06	10
VBL120L1.50R240-6S08	•	6	30°	12	11.7	9	1.55	1	24	S08	16.5	KEYV-S08	15
VBL160L1.80R320-6S10	•	6	30°	16	15.3	12	1.8	1	32	S10	20.5	KEYV-S10	28


^{*} トルク:推奨締付けトルク (N·m) 1 ケース 2 個入り

●:新製品

VCA**-04/06...

4,6枚刃、面取り角45°


形 番	AH715 AH725	NOF	FHA	DCX	DCSFMS	APMX	DC	CRKS	LF	スパナ	トルク*
VCA100L04.0A45-04S06	• •	4	0°	10	10	4	1.95	S06	13	KEYV-S06	10
VCA120L05.0A45-04S08	•	4	0°	12	12	5	1.95	S08	16.5	KEYV-S08	15
VCA127L05.3A45-04S08	•	4	0°	12.7	12.7	5.3	1.98	S08	16.5	KEYV-S08	15
VCA160L06.5A45-06S10	• •	6	0°	16	16	6.5	3	S10	20.3	KEYV-S10	28
VCA200L07.5A45-06S12	•	6	0°	20	18.3	7.5	5	S12	25.5	KEYV-S12	28

^{*}トルク:推奨締付けトルク (N·m)

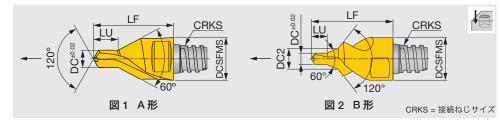
VDS...

2枚刃、面取り角45°、ねじれ切れ刃

形 番	AH725	NOF	FHA	DC	DCSFMS	CDX	KAPR	CRKS	LF	スパナ	トルク *
VDS080A45-02S05	•	2	10°	8	7.7	3.7	45°	S05	15	KEYV-S05	7
VDS100A45-02S06		2	10°	10	9.7	4.4	45°	S06	19	KEYV-S06	10
VDS120A45-02S08	•	2	10°	12	11.7	5.4	45°	S08	23	KEYV-S08	15
VDS160A45-02S10	•	2	10°	16	15.3	7.1	45°	S10	28	KEYV-S10	28

^{*} トルク:推奨締付けトルク (N·m) 1 ケース 2 個入り

¹ケース2個入り

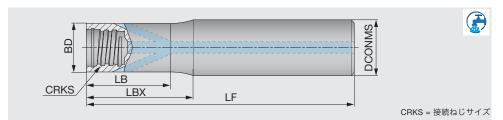

^{●:}新製品 ●:設定アイテム

^{●:}新製品

2枚刃、A/B形センター

形 番	AH725	NOF	FHA	DC ^{±0.02}	DC2	DCSFMS	LU	CRKS	LF	スパナ	トルク*	図
VDP107L1.60A30-02S04	•	2	0°	1.07	-	6	1.6	S04	10	KEYV-S05	4	1
VDP165L2.40A30-02S04		2	0°	1.65	-	6	2.4	S04	10	KEYV-S05	4	1
VDP207L2.90A30-02S04	•	2	0°	2.07	-	6	2.9	S04	10	KEYV-S05	4	1
VDP328L04.6A30-02S05	•	2	0°	3.28	-	8	4.6	S05	15	KEYV-S05	7	1
VDP412L05.9A30-02S06	•	2	0°	4.12	-	10	5.9	S06	19	KEYV-S06	10	1
VDP513L07.2A30-02S08	•	2	0°	5.13	-	12	7.2	S08	23	KEYV-S08	15	1
VDP646L08.9A30-02S10	•	2	0°	6.46	-	16	8.9	S10	28	KEYV-S10	28	1
VDP324L4.38B30-02S08		2	0°	3.24	6.77	12	4.4	S08	23	KEYV-S08	15	2
VDP409L5.60B30-02S08	•	2	0°	4.09	8.56	12.7	5.6	S08	23	KEYV-S08	15	2
VDP509L6.89B30-02S12	•	2	0°	5.09	10.69	18.45	6.9	S12	25.5	KEYV-S12	28	2
VDP641L8.63B30-02S12		2	0°	6.41	13.29	20	8.6	S12	25.5	KEYV-S12	28	2

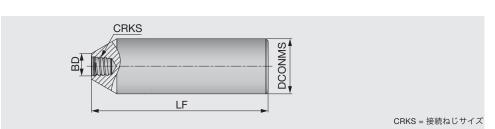
^{*} トルク:推奨締付けトルク (N·m) 1 ケース 2 個入り


●:新製品 ●:設定アイテム

■ シャンク

VSSD**-W-A...

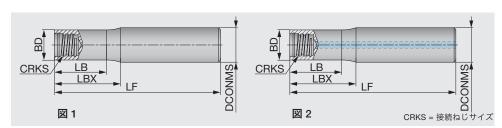
ストレートネック+円筒シャンク、油穴付き



形 番	DCONMS	BD	LF	LBX	LB	CRKS	シャンク材質
VSSD10L070S06-W-A	10	9.6	70	20	19	S06	タングステン
VSSD10L090S06-W-A	10	9.6	90	40	39	S06	タングステン
VSSD10L110S06-W-A	10	9.6	110	60	59	S06	タングステン
VSSD12L070S08-W-A	12	11.5	70	20	19	S08	タングステン
VSSD12L090S08-W-A	12	11.5	90	40	39	S08	タングステン
VSSD12L110S08-W-A	12	11.5	110	60	59	S08	タングステン
VSSD12L130S08-W-A	12	11.5	130	80	79	S08	タングステン
VSSD16L070S10-W-A	16	15.2	70	20	18.5	S10	タングステン
VSSD16L090S10-W-A	16	15.2	90	40	36.5	S10	タングステン
VSSD16L110S10-W-A	16	15.2	110	60	58.5	S10	タングステン
VSSD16L130S10-W-A	16	15.2	130	80	78.5	S10	タングステン
VSSD20L090S12-W-A	20	18.3	90	40	37	S12	タングステン
VSSD20L130S12-W-A	20	18.3	130	80	77	S12	タングステン

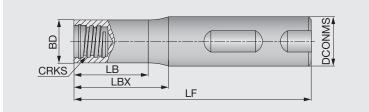
VSSD...

高剛性シャンク


形 番	DCONMS	BD	LF	CRKS	シャンク形状	シャンク材質
New VSSD06L050S04-S	6	5.8	50	S04	円筒	鋼
New VSSD06L060S04-C	6	5.8	60	S04	円筒	超硬
New VSSD08L050S04-S	8	5.8	50	S04	円筒	鋼
New VSSD08L060S04-C	8	5.8	60	S04	円筒	超硬
VSSD10L055S05-S	10	7.6	55	S05	円筒	鋼
VSSD12L065S06-S	12	9.6	65	S06	円筒	鋼
VSSD16L065S08-S	16	11.6	65	S08	円筒	鋼
VSSD20L070S10-S	20	15.3	70	S10	円筒	鋼
VSSD25L075S12-S	25	18.3	75	S12	円筒	鋼
New VSSD32L100S15-S	32	23.9	100	S15	円筒	鋼
New VSSD40I 100S21-S	40	30	100	S21	円筒	細

VSSD...

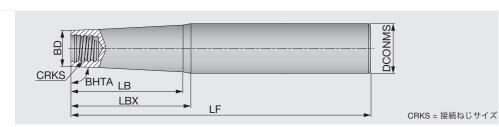
ストレートネック+円筒シャンク



形 番	DCONMS	BD	LF	LBX	LB	CRKS	シャンク形状	シャンク材質	义
VSSD08L060S05-S	8	7.6	60	15	12.8	S05	円筒	鋼	1
VSSD08L070S05-C	8	7.6	70	20	19	S05	円筒	超硬	1
VSSD08L090S05-C	8	7.6	90	40	39	S05	円筒	超硬	1
VSSD08L110S05-C	8	7.6	110	60	59	S05	円筒	超硬	1
VSSD10L070S06-C	10	9.6	70	20	18.5	S06	円筒	超硬	1
VSSD10L075S06-S	10	9.6	75	20	19.4	S06	円筒	鋼	1
VSSD10L090S06-C	10	9.6	90	40	38.5	S06	円筒	超硬	1
VSSD10L110S06-C	10	9.6	110	60	58.5	S06	円筒	超硬	1
VSSD10L150S06-C	10	9.6	150	100	98.5	S06	円筒	超硬	1
VSSD12L070S08-C	12	11.5	70	20	17	S08	円筒	超硬	1
New VSSD12L070S08-C-A	12	11.5	70	20	17	S08	円筒	超硬	2
VSSD12L090S08-C	12	11.5	90	40	37	S08	円筒	超硬	1
VSSD12L090S08-S	12	11.5	90	16	13.6	S08	円筒	鋼	1
New VSSD12L090S08-S-A	12	11.5	90	16	13.6	S08	円筒	鋼	2
New VSSD12L090LS08-C-A	12	11.5	90	40	37	S08	円筒	超硬	2
New VSSD12L090LS08-S-A	12	11.5	90	40	37	S08	円筒	鋼	2
VSSD12L110S08-C	12	11.5	110	60	58	S08	円筒	超硬	1
Wew VSSD12L110S08-C-A	12	11.5	110	60	57	S08	円筒	超硬	2
VSSD12L130S08-C	12	11.5	130	80	78	S08	円筒	超硬	1
Wew VSSD12L130S08-C-A	12	11.5	130	80	77	S08	円筒	超硬	2
VSSD16L090S10-C	16	15.2	90	40	38	S10	円筒	超硬	1
Wew VSSD16L090S10-C-A	16	15.2	90	40	38	S10	円筒	超硬	2
VSSD16L100S10-S	16	15.2	100	20	18	S10	円筒	鋼	1
New VSSD16L100S10-S-A	16	15.2	100	20	18	S10	円筒	鋼	2
New VSSD16L100LS10-S-A	16	15.2	100	40	38	S10	円筒	鋼	2
VSSD16L110S10-C	16	15.2	110	60	58	S10	円筒	超硬	1
New VSSD16L110S10-C-A	16	15.2	110	60	58	S10	円筒	超硬	2
VSSD16L130S10-C	16	15.2	130	80	78	S10	円筒	超硬	1
New VSSD16L130S10-C-A	16	15.2	130	80	78	S10	円筒	超硬	2
VSSD16L150S10-C	16	15.2	150	100	98	S10	円筒	超硬	1
VSSD20L090S12-C	20	18.3	90	40	37	S12	円筒	超硬	1
VSSD20L120S12-S	20	18.3	120	25	20.5	S12	円筒	鋼	1
VSSD20L130S12-C	20	18.3	130	80	77	S12	円筒	超硬	1
VSSD20L200S12-C	20	18.3	200	120	117	S12	円筒	超硬	1
VSSD25L120S15-C	25	23.9	120	60	58	S15	円筒	超硬	1
VSSD25L135S15-S	25	23.9	135	35	33	S15	円筒	鋼	1
VSSD25L170S15-C	25	23.9	170	100	98	S15	円筒	超硬	1
VSSD25L250S15-C	25	23.9	250	150	148	S15	円筒	超硬	1
New VSSD32L100S21-S	32	30	100	35	32	S21	円筒	鋼	1
Wew VSSD32L150S21-S	32	30	150	54	50	S21	円筒	鋼	1

VSSD**-W...

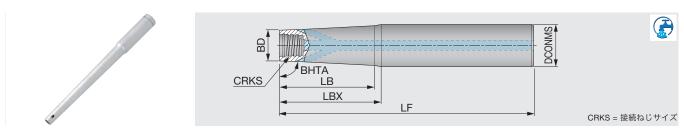
ストレートネック+ウェルドンシャンク


CRKS = 接続ねじサイズ

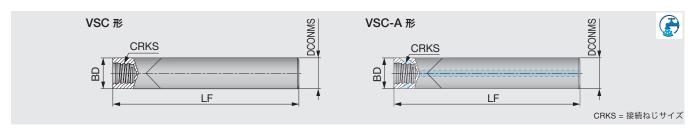
形 番	DCONMS	BD	LF	LBX	LB	CRKS	シャンク形状	シャンク材質
VSSD12L055W05-S	12	7.6	55	3.8	-	S05	ウェルドン	鋼
VSSD16L065W06-S	16	9.6	65	6	-	S06	ウェルドン	鋼
VSSD16L065W08-S	16	11.5	65	4	-	S08	ウェルドン	鋼
VSSD20L070W10-S	20	15.2	70	4	-	S10	ウェルドン	鋼
VSSD25L075W12-S	25	18.3	75	6	-	S12	ウェルドン	鋼

VTSD...

テーパネック+円筒シャンク



形番	ВНТА	DCONMS	BD	LF	LBX	LB	CRKS	シャンク材質
New VTSD08L080S04-S	87.4°	8	5.8	80	24	-	S04	鋼
VTSD12L080S05-S	85°	12	7.6	80	25	-	S05	鋼
VTSD12L100S05-S	89°	12	7.6	100	35	29	S05	鋼
VTSD12L110S05-C	89°	12	7.6	110	60	56	S05	超硬
VTSD12L130S05-C	89°	12	7.6	130	80	77	S05	超硬
VTSD16L125S06-S	85°	16	9.6	125	34	31	S06	鋼
VTSD16L130S08-C	89°	16	11.5	130	80	76.5	S08	超硬
VTSD16L140S08-S	85°	16	11.5	140	22	19	S08	鋼
VTSD16L150S05-C	89°	16	7.6	150	100	91	S05	超硬
VTSD16L150S06-C	89°	16	9.6	150	100	94.5	S06	超硬
VTSD16L150S08-C	89°	16	11.5	150	100	98	S08	超硬
VTSD16L160S06-S	89°	16	9.6	160	55	46.5	S06	鋼
VTSD16L170S06-C	89°	16	9.6	170	120	116.5	S06	超硬
VTSD20L140S10-S	85°	20	15.2	140	27.5	-	S10	鋼
VTSD20L170S08-C	89°	20	11.5	170	120	112	S08	超硬
VTSD20L170S08-S	89°	20	11.5	170	80	69.5	S08	鋼
VTSD20L170S10-C	89°	20	15.2	170	120	119	S10	超硬
VTSD20L190S10-C	89°	20	15.2	190	140	-	S10	超硬
VTSD20L190S10-S	89°	20	15.2	190	80	73	S10	鋼
VTSD20L210S10-C	89°	20	15.2	210	160	-	S10	超硬
VTSD25L160S12-S	85°	25	18.3	160	40	-	S12	鋼
VTSD25L170S10-S	85°	25	15.2	170	56	-	S10	鋼
VTSD25L180S12-C	89°	25	18.3	180	120	115	S12	超硬
VTSD25L210S12-S	89°	25	18.3	210	100	94.5	S12	鋼
VTSD25L250S12-C	89°	25	18.3	250	140	136.5	S12	超硬
VTSD32L155S15-S	85°	32	23.9	155	45	-	S15	鋼
VTSD32L190S12-S	85°	32	18.3	190	80	-	S12	鋼
VTSD32L220S15-S	88°	32	23.9	220	100	-	S15	鋼
VTSD32L250S15-C	89°	32	23.9	250	150	145	S15	超硬
VTSD32L300S15-C	89°	32	23.9	300	200	198	S15	超硬
New VTSD40L150S21-S	85°	40	15.2	150	57	-	S21	鋼

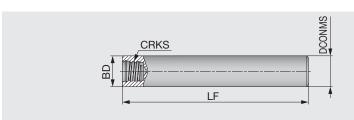

テーパネック+円筒シャンク、油穴付き

形 番	BHTA	DCONMS	BD	LF	LBX	LB	CRKS	シャンク材質
VTSD12L110S06-W-A	89°	12	9.6	110	60	59	S06	タングステン
VTSD16L170S06-W-A	89°	16	9.6	170	120	116	S06	タングステン

VSC...

VST形溝加工ヘッド用、円筒シャンク

形 番	DCONMS	BD	LF	CRKS	エア穴	シャンク材質
VSC100L100S06-C	10	10	100	S06	なし	超硬
VSC120L100S08-C-A	12	12	100	S08	あり	招硬

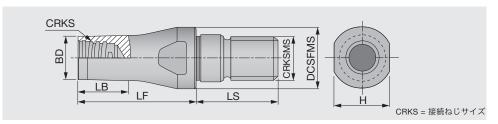

VSC 形シャンクには、VST 形溝加工ヘッドの使用を推奨します。

他のヘッドを使用する場合には、最大切込み量(各ヘッドの ap 値参照)を超えないように、ご注意ください。シャンク径に逃げが無いので、加工中に被削材の壁に接触する恐れがあります。

VSTD...

VTB形Tスロットヘッド用、円筒シャンク

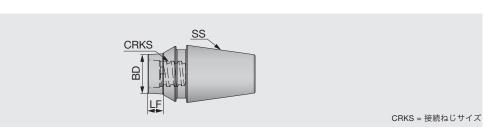
CRKS = 接続ねじサイズ


形 番	DCONMS	BD	LF	CRKS	シャンク材質
New VSTD06L070S04-S	6	6	70	S04	鋼
VSTD08L070S05-S	8	8	70	S05	鋼
VSTD10L080S06-S	10	10	80	S06	鋼
VSTD12L090S08-S	12	12	90	S08	鋼
VSTD16L100S10-S	16	16	100	S10	鋼

VSTD 形シャンクには、VTB 形 T スロットヘッドの使用を推奨します。 他のヘッドを使用する場合には、最大切込み量(各ヘッドの ap 値参照)を超えないように、ご注意ください。 シャンク径に逃げが無いので、加工中に被削材の壁に接触する恐れがあります。

VAD**-M...

タングフレックス接続用アダプタ



形 番	BD	DCSFMS	LF	LS	LB	CRKS	CRKSMS	н	シャンク材質
VAD130L016S08-S-M8	11.7	13	16	17.5	6	S08	M8	11	鋼
VAD130L025S08-S-M8	11.7	13	25	17.5	20	S08	M8	11	鋼
VAD180L020S08-S-M10	11.7	18	20	20	12	S08	M10	13	鋼
VAD180L025S08-S-M10	11.7	18	25	20	15	S08	M10	11	鋼
VAD210L020S08-S-M12	11.7	21	20	20	10	S08	M12	12.75	鋼
VAD210L025S08-S-M12	11.7	21	25	20	13	S08	M12	12.75	鋼

VER...

ER11/16用コレット、ストレートネック

形 番	ss	BD	LF	CRKS	シャンク材質
New VER11AL006S04-S	ER11	5.8	6	S04	鋼
New VER11AL006S05-S	ER11	7.9	6	S05	鋼
VER11CL006S05-S (1)	ER11	7.92	6	S05	鋼
New VER11AL020S05-S	ER11	7.9	20	S05	鋼
VER11CL020S05-S (1)	ER11	7.92	20	S05	鋼
New VER16AL012S05-S	ER16	7.9	12	S05	鋼
VER16CL012S05-S (1)	ER16	7.92	12	S05	鋼
New VER16AL020S05-S	ER16	7.9	20	S05	鋼
VER16CL020S05-S (1)	ER16	7.92	20	S05	鋼
New VER16AL010S06-S	ER16	9.9	10	S06	鋼
VER16CL010S06-S (1)	ER16	9.92	10	S06	鋼
New VER16AL020S06-S	ER16	9.9	20	S06	鋼
VER16CL020S06-S (1)	ER16	9.92	20	S06	鋼
New VER16AL006S08-S	ER16	11.6	6	S08	鋼
VER16CL006S08-S (1)	ER16	11.6	6	S08	鋼
New VER16AL020S08-S	ER16	11.6	20	S08	鋼
VER16CL020S08-S (1)	ER16	11.6	20	S08	鋼

(1) 2021 年内に販売中止予定

■■標準切削条件

肩削り

VEH形, VEE形: 3枚刃, VED / VEE形: 4枚刃, VEE-I形, VED-R形

	44 Mai 44	TT-1-	切削速度。					送り:fz(-				_切込み	切削幅
ISO	被 削 材	硬さ	Vc (m/min)	5	6	8		径: DC (i 12	mm) 16	20	25	32	_ <i>a</i> p (mm)	<i>a</i> e (mm)
	炭素鋼 S45C, S55C など	- 300 HB		0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
P	合金鋼 SCM440, SCr420 など	- 300 HB	60 - 140	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	60 - 120	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	40 - 100	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	80 - 200	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
	ダクタイル鋳鉄 FCD450 など	150 - 250 HB	80 - 200	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
N	アルミニウム合金 Si < 13%	-	200 - 700	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
	アルミニウム合金 Si ≧ 13%	-	100 - 300	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
S	チタン合金 Ti-6Al-4V など	-	40 - 80	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
3	耐熱合金 インコネル 718 など	-	20 - 40	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	40 - 80	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC
	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	20 - 60	0.03 - 0.07	0.03 - 0.07	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.1 - 0.18	0.6 x DC	0.25 x DC

VED: 7, 9枚刃

			切削速度			刃当り送り	: fz (mm/t)			切込み	切削幅
ISO	被 削 材	硬さ	Vc			工具径: I	DC (mm)			_ ap	ae
			(m/min)	8	10	12	16	20	25	(mm)	(mm)
S	チタン合金 Ti-6Al-4V など	-	60 - 120	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.6 x DC	0.02 x DC
3	耐熱合金 インコネル 718 など	-	30 - 60	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.6 x DC	0.02 x DC
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	80 - 160	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.6 x DC	0.02 x DC
П	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	40 - 90	0.05 - 0.09	0.07 - 0.12	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	0.6 x DC	0.02 x DC

溝加工

VEH形, VEE形: 3枚刃, VED / VEE形: 4枚刃, VEE-I形,

ISO	被削材	硬さ	切削速度 ₋ <i>V</i> c -					送り : fz (径: DC (ı	<u> </u>				切込み ap
			(m/min)	5	6	8	10	12	16	20	25	32	(mm)
	炭素鋼 S45C, S55C など	- 300 HB	50 - 70	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
P	合金鋼 SCM440, SCr420 など	- 300 HB	40 - 80	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	40 - 70	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	30 - 60	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	50 - 120	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
	ダクタイル鋳鉄 FCD450 など	150 - 250 HB	50 - 120	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
N	アルミニウム合金 Si < 13%	-	130 - 400	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
	アルミニウム合金 Si ≧ 13%	-	70 - 200	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
S	チタン合金 Ti-6Al-4V など	-	20 - 40	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
3	耐熱合金 インコネル 718 など	-	10 - 20	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	25 - 60	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC
••	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	10 - 30	0.03 - 0.04	0.03 - 0.04	0.03 - 0.04	0.04 - 0.05	0.05 - 0.06	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1	0.07 - 0.1	0.5 x DC

平面加工

VFM形

	44 Mai 1 I	h	切削速度		刃当り送り		切込み	切削幅	
ISO	被削材	硬さ	Vc (m/min)	12	工具径: 16	DC (mm) 20	25	ap (mm)	ae (mm)
	炭素鋼 S45C, S55C など	- 300 HB	80 - 180	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
P	合金鋼 SCM440, SCr420 など	- 300 HB	60 - 140	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	60 - 120	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	40 - 100	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	80 - 200	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
	ダクタイル鋳鉄 FCD450 など	150 - 250 HB	80 - 200	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
N	アルミニウム合金 Si < 13%	-	200 - 700	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
	アルミニウム合金 Si ≧ 13%	-	100 - 300	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
S	チタン合金 Ti-6Al-4V など	-	40 - 80	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
3	耐熱合金 インコネル 718 など	-	20 - 40	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	40 - 80	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC
	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	20 - 60	0.08 - 0.13	0.09 - 0.15	0.1 - 0.17	0.1 - 0.17	1	0.7 x DC

高送り

VFX形: 2, 4, 6枚刃

ISO			切削速度	ø1	10	ø1	12	ø1	16	ø2	20	_切削幅
ISO	被 削 材	硬さ	Vc	刃当り送り	切込み	刃当り送り	切込み	刃当り送り	切込み	刃当り送り	切込み	ae
			(m/min)	fz (mm/t)	<i>a</i> p (mm)	(mm)						
	炭素鋼 S45C, S55C など	- 300 HB	100 - 200	0.3 - 0.7	0.5	0.4 - 0.8	0.5	0.5 - 0.9	0.75	0.6 - 1	1	0.6 x DC
P	合金鋼 SCM440, SCr420 など	- 300 HB	80 - 180	0.2 - 0.6	0.5	0.3 - 0.7	0.5	0.4 - 0.8	0.75	0.5 - 0.9	1	0.6 x DC
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	80 - 160	0.2 - 0.5	0.4	0.2 - 0.5	0.4	0.3 - 0.6	0.5	0.3 - 0.6	0.75	0.6 x DC
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	60 - 100	0.2 - 0.6	0.4	0.2 - 0.6	0.4	0.3 - 0.7	0.5	0.3 - 0.7	0.75	0.6 x DC
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	100 - 220	0.3 - 0.7	0.5	0.4 - 0.8	0.75	0.5 - 0.9	0.75	0.6 - 1	1	0.6 x DC
	ダクタイル鋳鉄 FCD450 など	150 - 250 HB	100 - 220	0.2 - 0.6	0.5	0.3 - 0.7	0.75	0.4 - 0.8	0.75	0.5 - 0.9	1	0.6 x DC
S	チタン合金 Ti-6Al-4V など	-	40 - 80	0.2 - 0.5	0.4	0.2 - 0.5	0.4	0.2 - 0.6	0.5	0.2 - 0.6	0.5	0.25 x DC
3	耐熱合金 インコネル 718 など	-	20 - 40	0.1 - 0.3	0.3	0.1 - 0.3	0.3	0.1 - 0.3	0.4	0.1 - 0.3	0.4	0.25 x DC
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	40 - 80	0.2 - 0.4	0.3	0.2 - 0.4	0.3	0.3 - 0.5	0.4	0.3 - 0.5	0.4	0.45 x DC
	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	20 - 60	0.1 - 0.2	0.2	0.1 - 0.2	0.2	0.1 - 0.3	0.3	0.1 - 0.3	0.3	0.25 x DC

倣い加工 (荒加工)

VBD-BG形, VBE-BG形

			切削速度」			刃	当り送り	: fz (mm/	t)			_切込み	ピック
ISO	被 削 材	硬さ	Vc -				工具径: [OC (mm)				_ <i>a</i> p	フィード P f
			(m/min)	5	6	8	10	12	16	20	25	(mm)	(mm)
	炭素鋼 S45C, S55C など	- 300 HB	100 - 200	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.4 x DC
P	合金鋼 SCM440, SCr420 など	- 300 HB	80 - 180	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.4 x DC
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	80 - 160	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.4 x DC
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	60 - 100	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.4 x DC
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	100 - 220	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.4 x DC
	ダクタイル鋳鉄 FCD450 など	150 - 250 HB	100 - 220	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.4 x DC
N	アルミニウム合金 Si < 13%	-	200 - 700	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.4 x DC
	アルミニウム合金 Si ≧ 13%	-	100 - 300	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.4 x DC
S	チタン合金 Ti-6Al-4V など	-	40 - 80	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.2 x DC
	耐熱合金 インコネル 718 など	-	20 - 40	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.2 x DC
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	40 - 80	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.2 x DC
	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	20 - 60	0.03 - 0.07	0.03 - 0.07	0.04 - 0.08	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.08 - 0.15	0.08 - 0.15	0.3 x DC	0.2 x DC

倣い加工(中仕上げ、仕上げ加工)

VBD-BG形, VBE-BG形

			切削速度_			刃	当り送り	: fz (mm/	t)			_切込み	ピック
ISO	被 削 材	硬さ	<i>V</i> c =				工具径: [C (mm)				<i>a</i> p	フィード P f
			(m/min)	5	6	8	10	12	16	20	25	(mm)	(mm)
	炭素鋼 S45C, S55C など	- 300 HB	120 - 250	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.1 x DC	0.15 x DC
P	合金鋼 SCM440, SCr420 など	- 300 HB	100 - 220	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.1 x DC	0.15 x DC
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	100 - 200	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.1 x DC	0.15 x DC
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	80 - 120	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.1 x DC	0.15 x DC
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	120 - 280	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.1 x DC	0.15 x DC
	ダクタイル鋳鉄 FCD450 など	150 - 250 HB	120 - 280	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.1 x DC	0.15 x DC
N	アルミニウム合金 Si < 13%	-	300 - 1000	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.1 x DC	0.15 x DC
	アルミニウム合金 Si ≧ 13%	-	150 - 400	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.1 x DC	0.15 x DC
S	チタン合金 Ti-6Al-4V など	-	50 - 100	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.08 x DC	0.1 x DC
3	耐熱合金 インコネル 718 など	-	30 - 50	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.08 x DC	0.1 x DC
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	50 - 100	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.08 x DC	0.1 x DC
	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	30 - 80	0.04 - 0.09	0.04 - 0.09	0.06 - 0.11	0.07 - 0.12	0.08 - 0.13	0.09 - 0.16	0.1 - 0.18	0.1 - 0.18	0.08 x DC	0.1 x DC

倣い加工

VBO形、VBN形、VBL形

ISO			Landal Nation	刃	当り送り <i>f</i> z (mm	/t)	カスプ高さ
ISO	被削材	硬さ	切削速度 Vc (m/min)		工具径 DC (mm))	ハヘノ同C - (mm)
			,	10	12	16	()
	炭素鋼 S45C, S55C など	- 300 HB	100 - 200	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
P	合金鋼 SCM440, SCr415 など	- 300 HB	80 - 180	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	80 - 160	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	60 - 100	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	100 - 220	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
	ダクタイル鋳鉄 FCD400 など	150 - 250 HB	100 - 220	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
N	アルミニウム合金 Si < 13%	-	200 - 700	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
	アルミニウム合金 Si ≧ 13%	-	100 - 300	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
S	チタン合金 Ti-6Al-4V など	-	40 - 80	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
3	耐熱合金 インコネル 718 など	-	20 - 40	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
H	焼入れ鋼 SKD61, SKT4 など	40 - 50 HRC	40 - 80	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1
•	焼入れ鋼 SKD11, SKH など	50 - 60 HRC	20 - 60	0.05 - 0.1	0.06 - 0.11	0.07 - 0.13	0.1

面取り(ミーリング加工、突き面取り加工)

VCA形

ISO	被 削 材	硬さ	切削速度 <i>V</i> c (m/min)	刃当り送り fz (mm/t)
	炭素鋼 S45C, S55C など	- 300 HB	60 - 100	0.03 - 0.06
P	合金鋼 SCM440, SCr420 など	- 300 HB	50 - 80	0.03 - 0.06
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	40 - 70	0.03 - 0.06
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	30 - 50	0.03 - 0.06
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	80 - 120	0.03 - 0.06
	ダクタイル鋳鉄 FCD450 など	150 - 250 HB	80 - 120	0.03 - 0.06
N	アルミニウム合金	-	100 - 200	0.04 - 0.08
S	チタン合金 Ti-6Al-4V など	-	30 - 50	0.025 - 0.05
	耐熱合金 インコネル 718 など	-	20 - 40	0.02 - 0.04
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	30 - 50	0.025 - 0.05
	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	20 - 40	0.02 - 0.04

スポットドリル

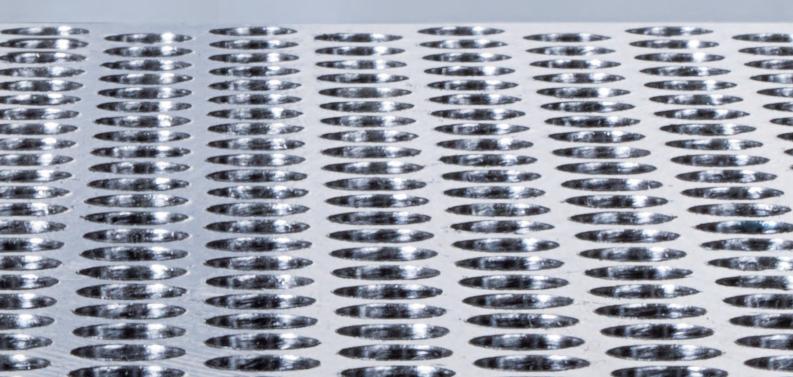
VDS形

ISO	被 削 材	硬さ	切削速度 Vc (m/min)	送り f (mm/rev)
	炭素鋼 S45C, S55C など	- 300 HB	60 - 100	0.06 - 0.12
P	合金鋼 SCM440, SCr420 など	- 300 HB	50 - 80	0.06 - 0.12
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	40 - 70	0.06 - 0.12
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	30 - 50	0.06 - 0.12
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	80 - 120	0.06 - 0.12
	ダクタイル鋳鉄 FCD450 など	150 - 250 HB	80 - 120	0.06 - 0.12
N	アルミニウム合金	-	100 - 200	0.08 - 0.16
S	チタン合金 Ti-6Al-4V など	-	30 - 50	0.05 - 0.1
3	耐熱合金 インコネル 718 など	-	20 - 40	0.04 - 0.08
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	30 - 50	0.05 - 0.1
	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	20 - 40	0.04 - 0.08

センタードリル

VDP形

			扣削市庄			送	り : f (mm/re	ev)		
ISO	被 削 材	硬さ	切削速度 Vc (m/min)	VDP107	VDP165	VDP207	VDP324 / VDP328	VDP409 / VDP412	VDP509 / VDP513	VDP641
	炭素鋼 S45C, S55C など	- 300 HB	40 - 80	0.02 - 0.04	0.025 - 0.05	0.025 - 0.05	0.04 - 0.08	0.05 - 0.1	0.05 - 0.1	0.06 - 0.12
P	合金鋼 SCM440, SCr420 など	- 300 HB	30 - 50	0.02 - 0.04	0.025 - 0.05	0.025 - 0.05	0.04 - 0.08	0.05 - 0.1	0.05 - 0.1	0.06 - 0.12
	プリハードン鋼 PX5, NAK80 など	30 - 40 HRC	20 - 30	0.02 - 0.04	0.025 - 0.05	0.025 - 0.05	0.04 - 0.08	0.05 - 0.1	0.05 - 0.1	0.06 - 0.12
M	ステンレス鋼 SUS304, SUS316 など	- 200 HB	15 - 25	0.015 - 0.03	0.02 - 0.04	0.02 - 0.04	0.04 - 0.08	0.05 - 0.1	0.05 - 0.1	0.06 - 0.12
K	ねずみ鋳鉄 FC250, FC300 など	150 - 250 HB	60 - 100	0.02 - 0.04	0.025 - 0.05	0.025 - 0.05	0.05 -0.09	0.07 - 0.012	0.07 - 0.12	0.12 - 0.18
	ダクタイル鋳鉄 FCD450 など	150 - 250 HB	60 - 100	0.02 - 0.04	0.025 - 0.05	0.025 - 0.05	0.04 - 0.08	0.05 - 0.1	0.05 - 0.1	0.1 - 0.15
S	チタン合金 Ti-6Al-4V など	-	15 - 25	0.01 - 0.02	0.01 - 0.02	0.015 - 0.03	0.04 - 0.07	0.04 - 0.07	0.04 - 0.07	0.04 - 0.07
3	耐熱合金 インコネル 718 など	-	10 - 20	0.01 - 0.02	0.01 - 0.02	0.015 - 0.03	0.03 - 0.06	0.03 - 0.06	0.03 - 0.06	0.03 - 0.06
H	焼入れ鋼 SKD6, SKT4 など	40 - 50 HRC	15 - 25	-	-	-	0.04 - 0.07	0.04 - 0.07	0.04 - 0.07	0.04 - 0.07
	焼入れ鋼 SKD11, SKH51 など	50 - 60 HRC	10 - 20	-	-	-	0.03 - 0.06	0.03 - 0.06	0.03 - 0.06	0.03 - 0.06


穴あけ

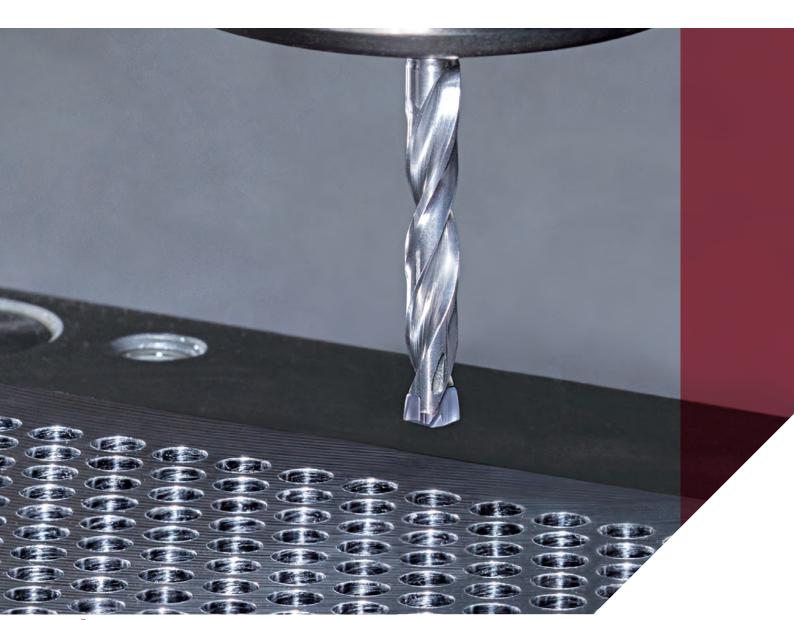
- AddMeisterDrill 140
- 146 DrillMeister
- 166 Solid4FlutesDrill

170 ReamMeister

W ... 200

Contract to

O ZO


Contract of

穴あけ加工

世界最小径のヘッド交換式ドリル

ADD 小径穴あけ加工において抜群の性能を発揮

- 内部給油機構を備え、優れた切りくず排出と 2 種類のヘッドが選択可能 安定した長寿命を達成
- ソリッドドリルと同等以上の穴径精度

ラインナップ

ヘッド

- DMP

様々な加工状況に対応可能な汎用ヘッド $DC = \emptyset 4 - \emptyset 5.9 \text{ mm}$

- DMC

クイックセンタリング形状を有する高精度加工用 ヘッド

 $DC = \emptyset 4 - \emptyset 5.9 \text{ mm}$

ドリルボディ

- **TID-R 形**: 円筒シャンク

L/D = 3, 5

材種

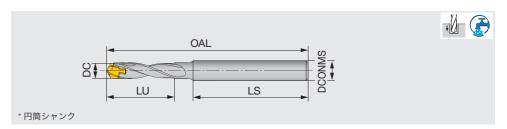
- AH725: 耐摩耗性と耐欠損性のバランスに優れた材種
- AH9130: 耐摩耗性に優れた材種

DMP

DMC

専用クランプキーにより、 迅速・確実なヘッド交換が可能

この製品の 詳しい情報は こちらから。



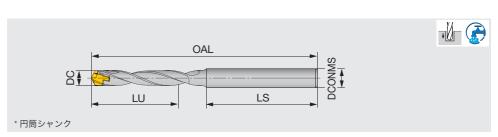
ドリル

TID-R L/D=3

ヘッド交換式ドリル

					O.	AL		
形 番	DC	DCONMS	LU	LS	DMP	DMC	 ポケットサイズ	ヘッド
TID040R06-3**	4 - 4.4	6	12.62	35	57.7	58.11	4	DM*040 - DM*044
TID045R06-3	4.5 - 4.9	6	14.16	35	59.65	59.91	4.5	DM*045 - DM*049
TID050R06-3	5 - 5.4	6	15.73	35	61.35	61.79	5	DM*050 - DM*054
TID055R06-3	5.5 - 5.9	6	17.31	35	64	64.32	5.5	DM*055 - DM*059

^{**2021} 年 12 月発売予定アイテム


工具径	加工穴径公差の目安				
ø4 - ø5.9	+0.04 / 0				

※各ヘッド装着時で全長OALが変わります。
※高送り条件ではドリルのスラスト力により、加工中にドリルの高さがずれる可能性があります。ツールホルダの突出し調整ねじをシャンク後端に突き当ててドリルの高さが変動しないようにで使用ください。
※シャンク把握長の増減による突き出し長調整を行う場合は、使用するツールホルダの最低把握長を確認の上、突き出し長延長を実施下さい。

TID-R L/D=5

ヘッド交換式ドリル

					UAL			
形 番	DC	DCONMS	LU	LS	DMP	DMC	ポケットサイズ	ヘッド
TID040R06-5**	4 - 4.4	6	20.62	35	65.7	66.11	4	DM*040 - DM*044
TID045R06-5	4.5 - 4.9	6	23.16	35	68.65	68.91	4.5	DM*045 - DM*049
TID050R06-5	5 - 5.4	6	25.73	35	71.3	71.64	5	DM*050 - DM*054
TID055R06-5	5.5 - 5.9	6	28.31	35	74.15	74.47	5.5	DM*055 - DM*059

^{**2021} 年 12 月発売予定アイテム

工具径	加工穴径公差の目安
ø4 - ø5.9	+0.05 / 0

※各ヘッド装着時で全長OALが変わります。
※高送り条件ではドリルのスラスト力により、加工中にドリルの高さがずれる可能性があります。ツールホルダの突出し調整ねじをシャンク後端に突き当ててドリルの高さが変動しないようにご使用ください。
※シャンク把握長の増減による突き出し長調整を行う場合は、使用するツールホルダの最低把握長を確認の上、突き出し長延長を実施下さい。

ヘッド

DMP 汎用ヘッド

Р	鋼	*	
M	ステンレス		
K	鋳鉄	*	
N	非鉄金属		
S	耐熱合金		
Н	高硬度材		

★:第一選択

н	高					★ .	
			コー	ティ	ング		
形番	DC	LPR	AH725			PL	ボディ
DMP040*	4	3.1				0.62	TID*040
DMP041*	4.1	3.1				0.64	TID*040
DMP042*	4.2	3.1				0.66	TID*040
DMP043*	4.3	3.1				0.67	TID*040
DMP044*	4.4	3.1				0.69	TID*040
DMP045	4.5	3.55				0.66	TID*045
DMP046	4.6	3.55				0.68	TID*045
DMP047	4.7	3.55				0.70	TID*045
DMP048	4.8	3.55				0.71	TID*045
DMP049	4.9	3.55				0.73	TID*045
DMP050	5	3.7				0.73	TID*050
DMP051	5.1	3.7				0.75	TID*050
DMP052	5.2	3.7				0.77	TID*050
DMP053	5.3	3.7				0.78	TID*050
DMP054	5.4	3.7				0.8	TID*050
DMP055	5.5	3.85				0.81	TID*055
DMP056	5.6	3.85				0.83	TID*055
DMP057	5.7	3.85				0.85	TID*055
DMP058	5.8	3.85				0.86	TID*055
DMP059	5.9	3.85				0.88	TID*055

ø4 - ø5.9 =1 ケース 2 個入り

*2021 年 12 月発売予定

●:新製品

DMC 高精度加工ヘッド

Р	鋼	*	
M	ステンレス		
K	鋳鉄	*	
N	非鉄金属		
S	耐熱合金		
Н	高硬度材		

★:第一選択

			コーティンク				
形番	DC	LPR	AH9130			PL	ボディ
DMC040*	4	3.51				0.86	TID*040
DMC041*	4.1	3.51				0.88	TID*040
DMC042*	4.2	3.51	•			0.9	TID*040
DMC043*	4.3	3.51				0.92	TID*040
DMC044*	4.4	3.51				0.94	TID*040
DMC045*	4.5	3.81				0.97	TID*045
DMC046*	4.6	3.81	•			0.99	TID*045
DMC047*	4.7	3.81				1.01	TID*045
DMC048*	4.8	3.81				1.03	TID*045
DMC049*	4.9	3.81	•			1.05	TID*045
DMC050	5	4.14	•			1.09	TID*050
DMC051	5.1	4.14				1.11	TID*050
DMC052	5.2	4.14				1.13	TID*050
DMC053	5.3	4.14				1.15	TID*050
DMC054	5.4	4.14	•			1.17	TID*050
DMC055	5.5	4.17				1.22	TID*055
DMC056	5.6	4.17				1.24	TID*055
DMC057	5.7	4.17	•			1.26	TID*055
DMC058	5.8	4.17	•			1.28	TID*055
DMC059	5.9	4.17				1.3	TID*055

ø4 - ø5.9 =1 ケース 2 個入り

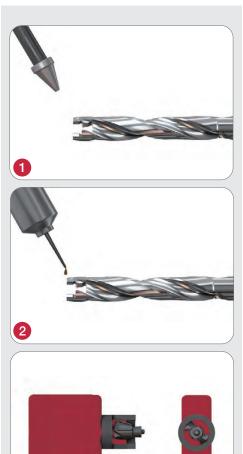
●: 新製品 *2021 年 12 月発売予定

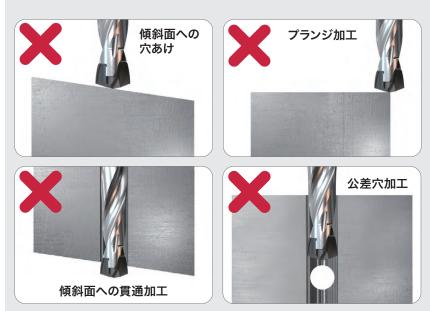
工具径 ヘッド径公差 +0.018 / 0 ø4 - ø5.9

■標準切削条件

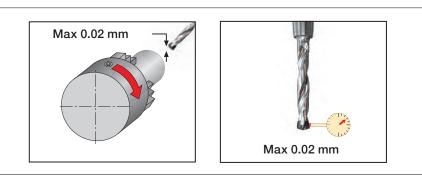
		切削速度	送り: f (mm/rev)					
ISO	被 削 材		DC (mm)					
		Vc (m/min)	ø4 - 4.4	ø4.5 - 4.9	ø5 - 5.9			
	低炭素鋼 (C < 0.3) SS400, SM490, S25Cなど	80 - 140	0.04 - 0.07	0.04 - 0.08	0.07 - 0.13			
P	炭素鋼 (C > 0.3) S45C, S55Cなど	70 - 120	0.04 - 0.07	0.04 - 0.08	0.07 - 0.13			
	低合金鋼 SCM415など	70 - 120	0.04 - 0.06	0.05 - 0.08	0.07 - 0.13			
	合金鋼 SCM440, SCr420, etc. 42CrMo4, 20Cr4, etc.	40 - 90	0.04 -0.07	0.05 - 0.08	0.07 - 0.13			
M	ステンレス鋼 SCM440, SCr420など	30 - 70	-	-	0.04 - 0.08			
K	普通鋳鉄 FC250など	80 - 180	0.04 - 0.08	0.04 - 0.08	0.1 - 0.15			
	ダクタイル鋳鉄 FCD700など	80 - 140	0.04 - 0.08	0.04 - 0.08	0.1 - 0.15			
N	アルミニウム合金 ADC12など	80 - 220	-	-	-			
S	チタン合金 Ti-6Al-4Vなど	20 - 50	-	-	-			
3	耐熱合金	20 - 50	-	-	-			
H	焼入れ鋼	20 - 50	-	-	-			

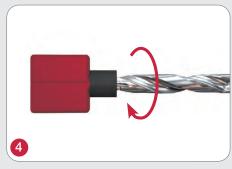
⁻ 上記切削条件は一般的な加工条件の目安です - 使用機械の馬力や剛性および被削材によって変更する必要があります

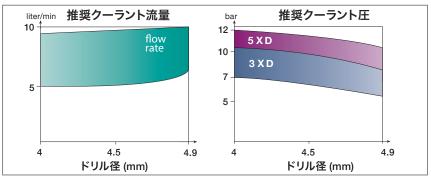

⁻ 機械剛性や切削条件などにより穴径は変動することがあります



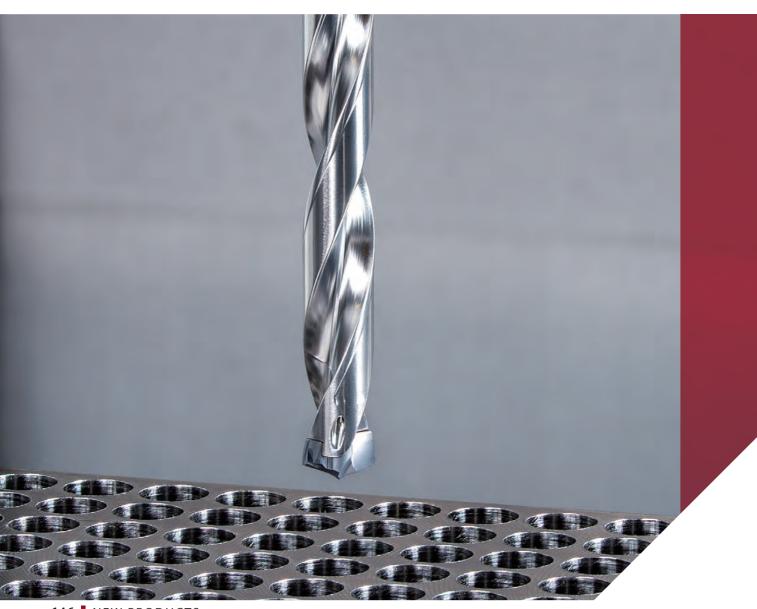
■ 使用方法について


ヘッド取り付け要領


推奨しない加工形態



切削油の給油方法



穴あけ加工

高い加工性能と圧倒的な工具寿命を実現するヘッド交換式ドリル

ADD 穴あけ加工で高い生産性を追求

- 迅速なヘッド交換が可能なため、機械のダウン タイムを大幅削減
- 再研削が不要なため、工具管理コストを大幅に 削減
- 豊富なシャンクのラインアップで、最適な一本を 選択可能。安定した高能率加工を実現

ラインナップ

ヘッド

- DMP

汎用性の高い第一推奨ヘッド $DC = \emptyset6 - \emptyset25.9 \text{ mm}$

- DMC

ダブルマージンおよびクイックセンタリング形状を 有する高精度加工用ヘッド

 $DC = \emptyset6 - \emptyset25.9 \text{ mm}$

- DMF

フラット形状を有する座繰り穴加工用ヘッド $DC = \emptyset6 - \emptyset25.9 \text{ mm}$

- DMH

高い刃先強度を有する汎用ヘッド $DC = \emptyset 10 - \emptyset 19.5 \text{ mm}$

- DMN

シャープエッジを有する非鉄金属加工用ヘッド $DC = \emptyset 10 - \emptyset 19.5 \text{ mm}$

材種

- AH725: 耐摩耗性と耐欠損性のバランスに優れ、 あらゆる被削材に対応可能
- AH9130: 耐摩耗性に優れた材種で、鋼加工に最適
- KS15F: 非鉄金属加工に最適

ドリルボディ

- TID-F 形: フラットコッタ付きフランジシャンク

L/D = 1.5, 3, 5, 8

- **TID-R 形**: 円筒シャンク

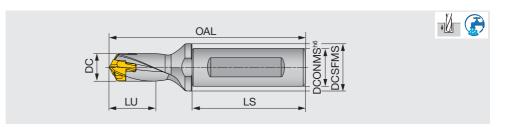
L/D = 3.5, 6, 8, 12

- TIDC 形: 面取りホルダ用シャンク

L/D = 3.5

TIDCF 形面取り用ホルダと組合わせて使用

- **TIDCF 形**:面取り用ホルダ 30 度、45 度、60 度の3 種類の 面取り用インサートが使用可能

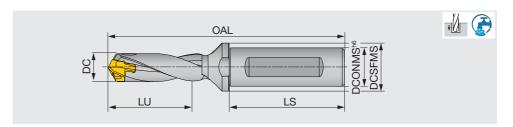


■ ドリルボディ

TID-F L/D=1.5

ヘッド交換式ドリル

							OAL			
形 番	DC	DCONMS	DCSFMS	LU	LS	DMP/H/N	DMC	DMF	 ポケットサイズ	ヘッド
TID060F12-1.5	6 - 6.4	12	16	10	45	67.85	68	67.01	6	DM*060 - DM*064
TID065F12-1.5	6.5 - 6.9	12	16	11	45	68.9	69.05	68.03	6.5	DM*065 - DM*069
TID070F12-1.5	7 - 7.4	12	16	12	45	69.95	70.4	69.08	7	DM*070 - DM*074
TID075F12-1.5	7.5 - 7.9	12	16	13	45	70.7	71.15	69.83	7	DM*075 - DM*079
TID080F12-1.5	8 - 8.9	12	16	14	45	72.25	72.4	71.39	8	DM*080 - DM*089
TID090F12-1.5	9 - 9.9	12	16	16	45	74.15	74.3	73.11	9	DM*090 - DM*099
TID100F16-1.5	10 - 10.9	16	20	17	48	79.05	79.67	77.72	10	DM*100 - DM*109
TID110F16-1.5	11 - 11.9	16	20	19	48	80.95	81.6	79.4	11	DM*110 - DM*119
TID120F16-1.5	12 - 12.9	16	20	20	48	82.8	83.43	81.21	12	DM*120 - DM*129
TID130F16-1.5	13 - 13.9	16	20	22	48	84.9	85.65	83.03	13	DM*130 - DM*139
TID140F16-1.5	14 - 14.9	16	20	24	48	88.95	89.76	86.96	14	DM*140 - DM*149
TID150F20-1.5	15 - 15.9	20	25	26	50	96.03	96.94	93.93	15	DM*150 - DM*159
TID160F20-1.5	16 - 16.9	20	25	27	50	99.1	100.07	96.84	16	DM*160 - DM*169
TID170F20-1.5	17 - 17.9	20	25	29	50	102.2	103.18	99.65	17	DM*170 - DM*179
TID180F25-1.5	18 - 18.9	25	32	30	56	111.3	112.35	108.45	18	DM*180 - DM*189
TID190F25-1.5	19 - 19.9	25	32	33	56	114.3	115.41	111.29	19	DM*190 - DM*199
TID200F25-1.5	20 - 20.9	25	32	34	56	117.4	118.62	115.12	20	DM*200 - DM*209
TID210F25-1.5	21 - 21.9	25	32	36	56	120.48	121.7	118.04	21	DM*210 - DM*219
TID220F25-1.5	22 - 22.9	25	32	37	56	123.56	124.84	120.86	22	DM*220 - DM*229
TID230F32-1.5	23 - 23.9	32	42	39	60	130.63	132.01	127.78	23	DM*230 - DM*239
TID240F32-1.5	24 - 24.9	32	42	40	60	133.7	135.11	130.71	24	DM*240 - DM*249
TID250F32-1.5	25 - 25.9	32	42	43	60	136.8	138.28	133.65	25	DM*250 - DM*259

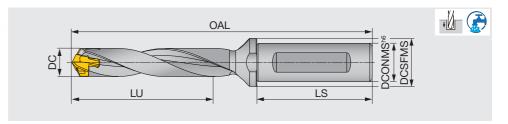

工具径	加工穴径公差の目安
ø6 - ø17.9	+0.03 / 0
ø18 - ø25.9	+0.035 / 0

<sup>安
 ※各ヘッド装着時で全長OALが変わります。
 ※88~9.9 mmサイズのDMC装着時の肩寸法は、DMP装着時に対して0.3 mm短くなります。その他サイズはDMC装着時とDMP装着時で肩寸法は変わりません。</sup>

TID-F L/D=3 ヘッド交換式ドリル

							OAL			
形 番	DC	DCONMS	DCSFMS	LU	LS	DMP/H/N	DMC	DMF	ポケットサイズ	ヘッド
TID060F12-3	6 - 6.4	12	16	19	45	76.85	77	76.01	6	DM*060 - DM*064
TID065F12-3	6.5 - 6.9	12	16	21	45	78.65	78.8	77.78	6.5	DM*065 - DM*069
TID070F12-3	7 - 7.4	12	16	22	45	80.45	80.9	79.58	7	DM*070 - DM*074
TID075F12-3	7.5 - 7.9	12	16	24	45	81.95	82.4	81.08	7	DM*075 - DM*079
TID080F12-3	8 - 8.4	12	16	26	45	84.25	84.4	83.39	8	DM*080 - DM*084
TID085F12-3	8.5 - 8.9	12	16	28	45	85.75	85.9	84.89	8	DM*085 - DM*089
TID090F12-3	9 - 9.4	12	16	29	45	87.65	87.8	86.61	9	DM*090 - DM*094
TID095F12-3	9.5 - 9.9	12	16	31	45	89.15	89.3	88.11	9	DM*095 - DM*099
TID100F16-3	10 - 10.4	16	20	32	48	94.05	94.67	92.72	10	DM*100 - DM*104
TID105F16-3	10.5 - 10.9	16	20	34	48	95.55	96.17	94.22	10	DM*105 - DM*109
TID110F16-3	11 - 11.4	16	20	35	48	97.45	98.1	95.9	11	DM*110 - DM*114
TID115F16-3	11.5 - 11.9	16	20	37	48	98.95	99.6	97.4	11	DM*115 - DM*119
TID120F16-3	12 - 12.4	16	20	38	48	100.8	101.43	99.21	12	DM*120 - DM*124
TID125F16-3	12.5 - 12.9	16	20	39	48	102.3	102.93	100.71	12	DM*125 - DM*129
TID130F16-3	13 - 13.4	16	20	41	48	104.4	105.15	102.53	13	DM*130 - DM*134
TID135F16-3	13.5 - 13.9	16	20	44	48	105.9	106.65	104.03	13	DM*135 - DM*139
TID140F16-3	14 - 14.4	16	20	45	48	109.95	110.76	107.96	14	DM*140 - DM*144
TID145F16-3	14.5 - 14.9	16	20	47	48	111.45	112.26	109.46	14	DM*145 - DM*149
TID150F20-3	15 - 15.9	20	25	48	50	118.53	119.44	116.43	15	DM*150 - DM*159
TID160F20-3	16 - 16.9	20	25	51	50	123.1	124.07	120.84	16	DM*160 - DM*169
TID170F20-3	17 - 17.9	20	25	54	50	127.7	128.68	125.15	17	DM*170 - DM*179
TID180F25-3	18 - 18.9	25	32	57	56	138.3	139.35	135.45	18	DM*180 - DM*189
TID190F25-3	19 - 19.9	25	32	61	56	142.8	143.91	139.79	19	DM*190 - DM*199
TID200F25-3	20 - 20.9	25	32	64	56	147.4	148.62	145.12	20	DM*200 - DM*209
TID210F25-3	21 - 21.9	25	32	67	56	151.98	153.2	149.54	21	DM*210 - DM*219
TID220F25-3	22 - 22.9	25	32	70	56	156.56	157.84	153.86	22	DM*220 - DM*229
TID230F32-3	23 - 23.9	32	42	73	60	165.13	166.51	162.28	23	DM*230 - DM*239
TID240F32-3	24 - 24.9	32	42	76	60	169.7	171.11	166.71	24	DM*240 - DM*249
TID250F32-3	25 - 25.9	32	42	80	60	174.3	175.78	171.15	25	DM*250 - DM*259

工具径	加工穴径公差の目安
ø6 - ø17.9	+0.04 / 0
ø18 - ø25.9	+0.045 / 0

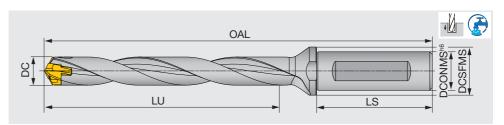

※各ヘッド装着時で全長OALが変わります。 ※88~9.9 mmサイズのDMC装着時の肩寸法は、DMP装着時に対して0.3 mm短くなります。その他サイズはDMC装着時とDMP装着時で肩寸法 は変わりません。

RILLMEISTER

TID-F L/D=5

ヘッド交換式ドリル

							OAL			
形 番	DC	DCONMS	DCSFMS	LU	LS	DMP/H/N	DMC	DMF	 ポケットサイズ	ヘッド
TID060F12-5	6 - 6.4	12	16	31	45	88.85	89	88.01	6	DM*060 - DM*064
TID065F12-5	6.5 - 6.9	12	16	34	45	91.65	91.8	90.78	6.5	DM*065 - DM*069
TID070F12-5	7 - 7.4	12	16	36	45	94.45	94.9	93.58	7	DM*070 - DM*074
TID075F12-5	7.5 - 7.9	12	16	39	45	96.95	97.4	96.08	7	DM*075 - DM*079
TID080F12-5	8 - 8.4	12	16	42	45	100.25	100.4	99.39	8	DM*080 - DM*084
TID085F12-5	8.5 - 8.9	12	16	45	45	102.75	102.9	101.89	8	DM*085 - DM*089
TID090F12-5	9 - 9.4	12	16	47	45	105.65	105.8	104.61	9	DM*090 - DM*094
TID095F12-5	9.5 - 9.9	12	16	50	45	108.15	108.3	107.11	9	DM*095 - DM*099
TID100F16-5	10 - 10.4	16	20	52	48	114.05	114.67	112.72	10	DM*100 - DM*104
TID105F16-5	10.5 - 10.9	16	20	55	48	116.55	117.17	115.22	10	DM*105 - DM*109
TID110F16-5	11 - 11.4	16	20	57	48	119.45	120.1	117.9	11	DM*110 - DM*114
TID115F16-5	11.5 - 11.9	16	20	60	48	121.95	122.6	120.4	11	DM*115 - DM*119
TID120F16-5	12 - 12.4	16	20	62	48	124.8	125.43	123.21	12	DM*120 - DM*124
TID125F16-5	12.5 - 12.9	16	20	64	48	127.3	127.93	125.71	12	DM*125 - DM*129
TID130F16-5	13 - 13.4	16	20	67	48	130.4	131.15	128.53	13	DM*130 - DM*134
TID135F16-5	13.5 - 13.9	16	20	71	48	132.9	133.65	131.03	13	DM*135 - DM*139
TID140F16-5	14 - 14.4	16	20	73	48	137.95	138.76	135.96	14	DM*140 - DM*144
TID145F16-5	14.5 - 14.9	16	20	76	48	140.45	141.26	138.46	14	DM*145 - DM*149
TID150F20-5	15 - 15.9	20	25	78	50	148.53	149.44	146.43	15	DM*150 - DM*159
TID160F20-5	16 - 16.9	20	25	83	50	155.1	156.07	152.84	16	DM*160 - DM*169
TID170F20-5	17 - 17.9	20	25	88	50	161.7	162.68	159.15	17	DM*170 - DM*179
TID180F25-5	18 - 18.9	25	32	93	56	174.3	175.35	171.45	18	DM*180 - DM*189
TID190F25-5	19 - 19.9	25	32	99	56	180.8	181.91	177.79	19	DM*190 - DM*199
TID200F25-5	20 - 20.9	25	32	104	56	187.6	188.82	185.32	20	DM*200 - DM*209
TID210F25-5	21 - 21.9	25	32	109	56	194.2	195.42	191.76	21	DM*210 - DM*219
TID220F25-5	22 - 22.9	25	32	114	56	200.8	202.08	198.1	22	DM*220 - DM*229
TID230F32-5	23 - 23.9	32	42	119	60	211.3	212.68	208.45	23	DM*230 - DM*239
TID240F32-5	24 - 24.9	32	42	124	60	217.9	219.31	214.91	24	DM*240 - DM*249
TID250F32-5	25 - 25.9	32	42	130	60	224.5	225.98	221.35	25	DM*250 - DM*259


工具径	加工穴径公差の目安
ø6 - ø25.9	+0.05 / 0

[※]各ヘッド装着時で全長OALが変わります。 ※ $08\sim9.9~\mathrm{mm}$ サイズのDMC装着時の肩寸法は、DMP装着時に対して $0.3~\mathrm{mm}$ 短くなります。その他サイズはDMC装着時とDMP装着時で肩寸法は変わりません。

TID-F L/D=8 ヘッド交換式ドリル

						OA	L			
形 番	DC	DCONMS	DCSFMS	LU	LS	DMP/H/N	DMC	DMF	 ポケットサイズ	ヘッド
TID070F12-8	7 - 7.4	12	16	57	45	115.45	115.90	114.58	7	DM*070 - DM*074
TID075F12-8	7.5 - 7.9	12	16	61	45	119.45	119.90	118.58	7	DM*075 - DM*079
TID080F12-8	8 - 8.4	12	16	66	45	124.25	124.40	123.39	8	DM*080 - DM*084
TID085F12-8	8.5 - 8.9	12	16	70	45	128.25	128.40	127.39	8	DM*085 - DM*089
TID090F12-8	9 - 9.4	12	16	74	45	132.65	132.80	131.61	9	DM*090 - DM*094
TID095F12-8	9.5 - 9.9	12	16	78	45	136.65	136.80	135.61	9	DM*095 - DM*099
TID100F16-8	10 - 10.4	16	20	82	48	144.05	144.67	142.72	10	DM*100 - DM*104
TID105F16-8	10.5 - 10.9	16	20	86	48	148.05	148.67	146.72	10	DM*105 - DM*109
TID110F16-8	11 - 11.4	16	20	90	48	152.45	153.10	150.90	11	DM*110 - DM*114
TID115F16-8	11.5 - 11.9	16	20	94	48	156.45	157.10	154.90	11	DM*115 - DM*119
TID120F16-8	12 - 12.4	16	20	98	48	160.80	161.43	159.21	12	DM*120 - DM*124
TID125F16-8	12.5 - 12.9	16	20	102	48	164.80	165.43	163.21	12	DM*125 - DM*129
TID130F16-8	13 - 13.4	16	20	106	48	169.40	170.15	167.53	13	DM*130 - DM*134
TID135F16-8	13.5 - 13.9	16	20	111	48	173.40	174.15	171.53	13	DM*135 - DM*139
TID140F16-8	14 - 14.4	16	20	115	48	179.95	180.76	177.96	14	DM*140 - DM*144
TID145F16-8	14.5 - 14.9	16	20	119	48	183.95	184.76	181.96	14	DM*145 - DM*149
TID150F20-8	15 - 15.9	20	25	123	50	193.53	194.44	191.43	15	DM*150 - DM*159
TID160F20-8	16 - 16.9	20	25	131	50	203.10	204.07	200.84	16	DM*160 - DM*169
TID170F20-8	17 - 17.9	20	25	139	50	212.70	213.68	210.15	17	DM*170 - DM*179
TID180F25-8	18 - 18.9	25	32	147	56	228.30	229.35	225.45	18	DM*180 - DM*189
TID190F25-8	19 - 19.9	25	32	156	56	237.80	238.91	234.79	19	DM*190 - DM*199
TID200F25-8	20 - 20.9	25	32	164	56	247.40	248.62	245.12	20	DM*200 - DM*209
TID210F25-8	21 - 21.9	25	32	172	56	256.98	258.20	254.54	21	DM*210 - DM*219
TID220F25-8	22 - 22.9	25	32	180	56	266.56	267.84	263.86	22	DM*220 - DM*229
TID230F32-8	23 - 23.9	32	42	188	60	280.13	281.51	277.28	23	DM*230 - DM*239
TID240F32-8	24 - 24.9	32	42	196	60	289.70	291.11	286.71	24	DM*240 - DM*249
TID250F32-8	25 - 25.9	32	42	205	60	299.30	300.78	296.15	25	DM*250 - DM*259

工具径	加工穴径公差の目安
ø7 - ø17.9	+0.05 / 0
ø18 - ø25.9	+0.055 / 0

※各ヘッド装着時で全長OALが変わります。 ※08~9.9 mmサイズのDMC装着時の肩寸法は、DMP装着時に対して0.3 mm短くなります。その他サイズはDMC装着時とDMP装着時で肩寸法 は変わりません。

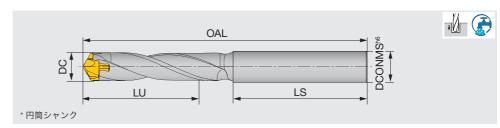

RILLMEISTER

TID-R-2E L/D=2

ヘッド交換式ドリル (外部給油)

		_				OAL		_	
形 番	DC	DCONMS	LU	LS	DMP	DMC	DMF	ポケットサイズ	ヘッド
TID060R8-2E	6 - 6.4	8	12.4	45	66.1	66.2	65.2	6	DM*060 - DM*064
TID065R8-2E	6.5 - 6.9	8	12.8	45	67.2	67.3	66.3	6.5	DM*065 - DM*069
TID070R8-2E	7 - 7.4	8	13.3	45	68	68.4	67.1	7	DM*070 - DM*074
TID075R8-2E	7.5 - 7.9	8	14.4	45	69	69.4	68.1	7	DM*075 - DM*079
TID080R10-2E	8 - 8.9	10	14.7	50	75.2	75.3	74.3	8	DM*080 - DM*089
TID090R10-2E	9 - 9.9	10	16.5	50	77.4	77.5	76.3	9	DM*090 - DM*099
TID100R12-2E	10 - 10.9	12	22.2	60	94.3	94.9	92.9	10	DM*100 - DM*109
TID110R12-2E	11 - 11.9	12	24	60	96.5	97.1	94.9	11	DM*110 - DM*119
TID120R14-2E	12 - 12.9	14	25.8	65	103.6	104.2	102.0	12	DM*120 - DM*129
TID130R14-2E	13 - 13.9	14	27.4	65	108.8	109.6	106.9	13	DM*130 - DM*139
TID140R16-2E	14 - 14.9	16	29	70	115	115.8	113.0	14	DM*140 - DM*149
TID150R16-2E	15 - 15.9	16	31.5	70	118	118.9	115.9	15	DM*150 - DM*159
TID160R18-2E	16 - 16.9	18	33.1	70	122.2	123.2	119.9	16	DM*160 - DM*169

工具径	加工穴径公差の目安
ø6 - ø16.9	+0.04 / 0

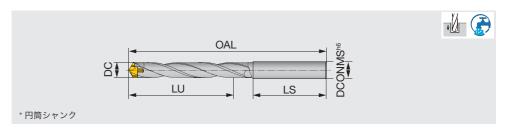

※各ヘッド装着時で全長OALが変わります。
※高送り条件ではドリルのスラスト力により、加工中にドリルの高さがずれる可能性があります。ツールホルダの突出し調整ねじをシャンク後端に突き当ててドリルの高さが変動しないようにご使用ください。
※シャンク把握長の増減による突き出し長調整を行う場合は、使用するツールホルダーの最低把握長を確認の上、突き出し長延長を実施下さい。
※08 - 9.9 mmサイズのDMC装着時の肩寸法は、DMP装着時に対して0.3 mm短くなります。その他サイズはDMC装着時とDMP装着時で肩寸法 は変わりません。

TID-R L/D=3.5

ヘッド交換式ドリル

						OAL			
形 番	DC	DCONMS	LU	LS	DMP/H/N	DMC	DMF	ポケットサイズ	ヘッド
TID060R8-3.5	6 - 6.4	8	21	45	75.64	75.79	74.8	6	DM*060 - DM*064
TID065R8-3.5	6.5 - 6.9	8	22.75	45	77.48	77.63	76.61	6.5	DM*065 - DM*069
TID070R8-3.5	7 - 7.4	8	24.5	45	79.08	79.53	78.21	7	DM*070 - DM*074
TID075R8-3.5	7.5 - 7.9	8	26.25	45	80.83	81.28	79.96	7	DM*075 - DM*079
TID080R10-3.5	8 - 8.4	10	28	50	87.75	87.9	86.89	8	DM*080 - DM*084
TID085R10-3.5	8.5 - 8.9	10	29.75	50	89.5	89.65	88.64	8	DM*085 - DM*089
TID090R10-3.5	9 - 9.4	10	31.5	50	91.42	91.57	90.38	9	DM*090 - DM*094
TID095R10-3.5	9.5 - 9.9	10	33.25	50	93.17	93.32	92.13	9	DM*095 - DM*099
TID100R12-3.5	10 - 10.4	12	42	60	114.03	114.65	112.7	10	DM*100 - DM*104
TID105R12-3.5	10.5 - 10.9	12	44	60	115.69	116.31	114.36	10	DM*105 - DM*109
TID110R12-3.5	11 - 11.4	12	46	65	123.13	123.78	121.58	11	DM*110 - DM*114
TID115R12-3.5	11.5 - 11.9	12	48	65	124.79	125.44	123.24	11	DM*115 - DM*119
TID120R14-3.5	12 - 12.4	14	50	65	127.18	127.81	125.59	12	DM*120 - DM*124
TID125R14-3.5	12.5 - 12.9	14	52	65	128.84	129.47	127.25	12	DM*125 - DM*129
TID130R14-3.5	13 - 13.4	14	54	65	132.74	133.49	130.87	13	DM*130 - DM*134
TID135R14-3.5	13.5 - 13.9	14	56	65	134.4	135.15	132.53	13	DM*135 - DM*139
TID140R16-3.5	14 - 14.4	16	58	70	142.18	142.99	140.19	14	DM*140 - DM*144
TID145R16-3.5	14.5 - 14.9	16	60	70	143.84	144.65	141.85	14	DM*145 - DM*149
TID150R16-3.5	15 - 15.9	16	64	70	148.44	149.35	146.34	15	DM*150 - DM*159
TID160R18-3.5	16 - 16.9	18	68	70	153.93	154.9	151.67	16	DM*160 - DM*169
TID170R18-3.5	17 - 17.9	18	72	70	158.46	159.44	155.91	17	DM*170 - DM*179
TID180R20-3.5	18 - 18.9	20	76	70	164.02	165.07	161.17	18	DM*180 - DM*189
TID190R20-3.5	19 - 19.9	20	80	70	168.37	169.48	165.36	19	DM*190 - DM*199

工具径	加工穴径公差の目安
ø6 - ø19.9	+0.04 / 0


[※]各ヘッド装着時で全長OALが変わります。
※高送り条件ではドリルのスラスト力により、加工中にドリルの高さがずれる可能性があります。ツールホルダの突出し調整ねじをシャンク後 端に突き当ててドリルの高さが変動しないようにご使用ください。 ※シャンク把握長の増減による突き出し長調整を行う場合は、使用するツールホルダーの最低把握長を確認の上、突き出し長延長を実施下さい。 ※08 - 9.9 mmサイズのDMC装着時の肩寸法は、DMP装着時に対して0.3 mm短くなります。その他サイズはDMC装着時とDMP装着時で肩寸法 は変わりません。

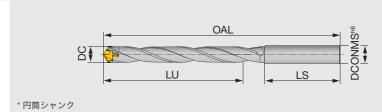
RILLMEISTER

TID-R L/D=6

ヘッド交換式ドリル

						OAL			
形 番	DC	DCONMS	LU	LS	DMP/H/N	DMC	DMF	ポケットサイズ	ヘッド
TID060R8-6	6 - 6.4	8	36	45	91.64	91.79	90.8	6	DM*060 - DM*064
TID065R8-6	6.5 - 6.9	8	39	45	94.73	94.88	93.86	6.5	DM*065 - DM*069
TID070R8-6	7 - 7.4	8	42	45	97.58	98.03	96.71	7	DM*070 - DM*074
TID075R8-6	7.5 - 7.9	8	45	45	100.58	101.03	99.71	7	DM*075 - DM*079
TID080R10-6	8 - 8.4	10	48	50	108.75	108.9	107.89	8	DM*080 - DM*084
TID085R10-6	8.5 - 8.9	10	51	50	111.75	111.9	110.89	8	DM*085 - DM*089
TID090R10-6	9 - 9.4	10	54	50	114.92	115.07	113.88	9	DM*090 - DM*094
TID095R10-6	9.5 - 9.9	10	57	50	117.92	118.07	116.88	9	DM*095 - DM*099
TID100R12-6	10 - 10.4	12	68	60	140.03	140.65	138.7	10	DM*100 - DM*104
TID105R12-6	10.5 - 10.9	12	71	60	142.94	143.56	141.61	10	DM*105 - DM*109
TID110R12-6	11 - 11.4	12	75	65	151.63	152.28	150.08	11	DM*110 - DM*114
TID115R12-6	11.5 - 11.9	12	78	65	154.54	155.19	152.99	11	DM*115 - DM*119
TID120R14-6	12 - 12.4	14	81	65	158.18	158.81	156.59	12	DM*120 - DM*124
TID125R14-6	12.5 - 12.9	14	84	65	161.09	161.72	159.5	12	DM*125 - DM*129
TID130R14-6	13 - 13.4	14	88	65	166.24	166.99	164.37	13	DM*130 - DM*134
TID135R14-6	13.5 - 13.9	14	91	65	169.15	169.9	167.28	13	DM*135 - DM*139
TID140R16-6	14 - 14.4	16	94	70	178.18	178.99	176.19	14	DM*140 - DM*144
TID145R16-6	14.5 - 14.9	16	97	70	181.09	181.9	179.1	14	DM*145 - DM*149
TID150R16-6	15 - 15.9	16	104	70	188.19	189.1	186.09	15	DM*150 - DM*159
TID160R18-6	16 - 16.9	18	110	70	196.18	197.15	193.92	16	DM*160 - DM*169
TID170R18-6	17 - 17.9	18	117	70	203.21	204.19	200.66	17	DM*170 - DM*179
TID180R20-6	18 - 18.9	20	124	70	211.27	212.32	208.42	18	DM*180 - DM*189
TID190R20-6	19 - 19.9	20	130	70	218.12	219.23	215.11	19	DM*190 - DM*199

工具径	加工穴径公差の目安
ø6 - ø17.9	+0.05 / 0
ø18 - ø19.9	+0.055 / 0



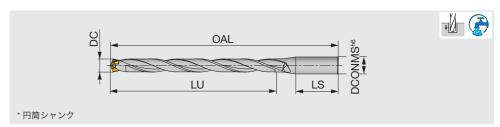
₩

TID-R L/D=8

ヘッド交換式ドリル

						OAL			
形 番	DC	DCONMS	LU	LS	DMP/H/N	DMC	DMF	ポケットサイズ	ヘッド
TID060R8-8	6 - 6.4	8	48	45	104.44	104.59	103.6	6	DM*060 - DM*064
TID065R8-8	6.5 - 6.9	8	52	45	108.53	108.68	107.66	6.5	DM*065 - DM*069
TID070R8-8	7 - 7.4	8	56	45	112.38	112.83	111.51	7	DM*070 - DM*074
TID075R8-8	7.5 - 7.9	8	60	45	116.38	116.83	115.51	7	DM*075 - DM*079
TID080R10-8	8 - 8.4	10	64	50	125.55	125.7	124.69	8	DM*080 - DM*084
TID085R10-8	8.5 - 8.9	10	68	50	129.55	129.7	128.69	8	DM*085 - DM*089
TID090R10-8	9 - 9.4	10	72	50	133.72	133.87	132.68	9	DM*090 - DM*094
TID095R10-8	9.5 - 9.9	10	76	50	137.72	137.87	136.68	9	DM*095 - DM*099
TID100R12-8	10 - 10.4	12	89	60	160.83	161.45	159.5	10	DM*100 - DM*104
TID105R12-8	10.5 - 10.9	12	93	60	164.74	165.36	163.41	10	DM*105 - DM*109
TID110R12-8	11 - 11.4	12	98	65	174.43	175.08	172.88	11	DM*110 - DM*114
TID115R12-8	11.5 - 11.9	12	102	65	178.34	178.99	176.79	11	DM*115 - DM*119
TID120R14-8	12 - 12.4	14	106	65	182.98	183.61	181.39	12	DM*120 - DM*124
TID125R14-8	12.5 - 12.9	14	110	65	186.89	187.52	185.3	12	DM*125 - DM*129
TID130R14-8	13 - 13.4	14	115	65	193.04	193.79	191.17	13	DM*130 - DM*134
TID135R14-8	13.5 - 13.9	14	119	65	196.9	197.65	195.03	13	DM*135 - DM*139
TID140R16-8	14 - 14.4	16	123	70	206.98	207.79	204.99	14	DM*140 - DM*144
TID145R16-8	14.5 - 14.9	16	127	70	210.89	211.7	208.9	14	DM*145 - DM*149
TID150R16-8	15 - 15.9	16	136	70	219.99	220.9	217.89	15	DM*150 - DM*159
TID160R18-8	16 - 16.9	18	144	70	229.98	230.95	227.72	16	DM*160 - DM*169
TID170R18-8	17 - 17.9	18	153	70	239.01	239.99	236.46	17	DM*170 - DM*179
TID180R20-8	18 - 18.9	20	162	70	249.07	250.12	246.22	18	DM*180 - DM*189
TID190R20-8	19 - 19.9	20	170	70	257.92	259.03	254.91	19	DM*190 - DM*199

工具径	加工穴径公差の目安
ø6 - ø17.9	+0.05 / 0
ø18 - ø19.9	+0.055 / 0


※各ヘッド装着時で全長OALが変わります。 ※高送り条件ではドリルのスラストカにより、加工中にドリルの高さがずれる可能性があります。ツールホルダの突出し調整ねじをシャンク後 端に突き当ててドリルの高さが変動しないようにご使用ください。 ※シャンク把握長の増減による突き出し長調整を行う場合は、使用するツールホルダーの最低把握長を確認の上、突き出し長延長を実施下さい。 ※88 - 9.9 mmサイズのDMC装着時の肩寸法は、DMP装着時に対して0.3 mm短くなります。その他サイズはDMC装着時とDMP装着時で肩寸法 は変わりません。

RILLMEISTER

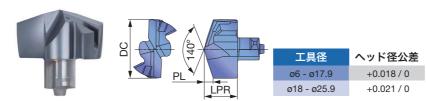
TID-R L/D=12

ヘッド交換式ドリル

						OAL			
形 番	DC	DCONMS	LU	LS	DMP/H/N	DMC	DMF	ポケットサイズ	ヘッド
TID080R12-12	8 - 8.4	12	98	45	156.25	156.4	155.39	8	DM*080 - DM*084
TID085R12-12	8.5 - 8.9	12	104	45	162.25	162.4	161.39	8	DM*085 - DM*089
TID090R12-12	9 - 9.4	12	110	45	168.65	168.8	167.61	9	DM*090 - DM*094
TID095R12-12	9.5 - 9.9	12	116	45	174.65	174.8	173.61	9	DM*095 - DM*099
TID100R16-12	10 - 10.4	16	122	48	184.05	184.67	182.72	10	DM*100 - DM*104
TID105R16-12	10.5 - 10.9	16	128	48	190.05	190.67	188.72	10	DM*105 - DM*109
TID110R16-12	11 - 11.4	16	134	48	196.45	197.1	194.9	11	DM*110 - DM*114
TID115R16-12	11.5 - 11.9	16	140	48	202.45	203.1	200.9	11	DM*115 - DM*119
TID120R16-12	12 - 12.4	16	146	48	208.8	209.43	207.21	12	DM*120 - DM*124
TID125R16-12	12.5 - 12.9	16	152	48	214.8	215.43	213.21	12	DM*125 - DM*129
TID130R16-12	13 - 13.4	16	158	48	221.4	222.15	219.53	13	DM*130 - DM*134
TID135R16-12	13.5 - 13.9	16	165	48	227.4	228.15	225.53	13	DM*135 - DM*139
TID140R16-12	14 - 14.4	16	171	48	235.95	236.76	233.96	14	DM*140 - DM*144
TID145R16-12	14.5 - 14.9	16	177	48	241.95	242.76	239.96	14	DM*145 - DM*149
TID150R20-12	15 - 15.9	20	183	50	253.53	254.44	251.43	15	DM*150 - DM*159
TID160R20-12	16 - 16.9	20	195	50	267.1	268.07	264.84	16	DM*160 - DM*169
TID170R20-12	17 - 17.9	20	207	50	280.7	281.68	278.15	17	DM*170 - DM*179
TID180R25-12	18 - 18.9	25	219	56	300.3	301.35	297.45	18	DM*180 - DM*189
TID190R25-12	19 - 19.9	25	232	56	313.8	314.91	310.79	19	DM*190 - DM*199
TID200R25-12	20 - 20.9	25	244	56	327.4	328.62	325.12	20	DM*200 - DM*209
TID210R25-12	21 - 21.9	25	256	56	340.98	342.2	338.54	21	DM*210 - DM*219
TID220R25-12	22 - 22.9	25	267	56	354.56	355.84	351.86	22	DM*220 - DM*229
TID230R32-12	23 - 23.9	32	276	60	372.13	373.51	369.28	23	DM*230 - DM*239
TID240R32-12	24 - 24.9	32	288	60	385.7	387.11	382.71	24	DM*240 - DM*249
TID250R32-12	25 - 25.9	32	300	60	399.3	400.78	396.15	25	DM*250 - DM*259

工具径	加工穴径公差の目安
ø8 - ø17.9	+0.05 / 0
a18 - a25 0	.0.055 / 0

ドリルボディの 詳しい情報は こちらから。



[※]各ヘッド装着時で全長OALが変わります。 ※高送り条件ではドリルのスラストカにより、加工中にドリルの高さがずれる可能性があります。ツールホルダの突出し調整ねじをシャンク後 端に突き当ててドリルの高さが変動しないようにご使用ください。 ※08 - 9.9 mmサイズのDMC装着時の肩寸法は、DMP装着時に対して0.3 mm短くなります。その他サイズはDMC装着時とDMP装着時で肩寸法 は変わりません。

■ドリルヘッド

DMP 汎用ヘッド

Р	鋼	☆	*	
М	ステンレス	*	☆	
K	鋳鉄	*	☆	
N	非鉄金属	☆	☆	
S	耐熱合金	*	☆	
н	高硬度材	*	₹	

Р	鋼	$\stackrel{\wedge}{\sim}$	\star	
M	ステンレス	*	$\stackrel{\wedge}{\sim}$	
K	鋳鉄	*	☆	
N	非鉄金属	☆	$\stackrel{\wedge}{\sim}$	
S	耐熱合金	*	☆	
Н	高硬度材	*	☆	

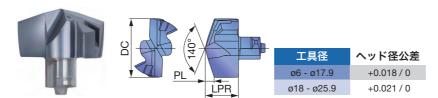
コーティング

★:第一選択 ☆:第二選択

Н	高 使		^	W			
形番	DC	LPR	AH725 4	AH9130	ング	PL	ボディ
DMP060	6	3.85	•			1.09	TID*060
DMP061	6.1	3.85	•			1.11	TID*060
DMP062	6.2	3.85	•			1.13	TID*060
DMP063	6.3	3.85	•			1.14	TID*060
DMP064	6.4	3.85	•			1.16	TID*060
DMP065	6.5	4.15	•			1.27	TID*065
DMP066	6.6	4.15	•			1.29	TID*065
DMP067	6.7	4.15	•			1.31	TID*065
DMP068	6.8	4.15	•	•		1.33	TID*065
DMP069	6.9	4.15	•			1.34	TID*065
DMP070	7	4.45	•			1.03	TID*070
DMP071	7.1	4.45	•			1.05	TID*070
DMP072	7.2	4.45	•			1.07	TID*070
DMP073	7.3	4.45	•			1.08	TID*070
DMP074	7.4	4.45	•			1.1	TID*070
DMP075	7.5	4.45	•	•		1.12	TID*075
DMP076	7.6	4.45	•			1.14	TID*075
DMP077	7.7	4.45	•			1.16	TID*075
DMP078	7.8	4.45	•			1.18	TID*075
DMP079	7.9	4.45	•			1.19	TID*075
DMP080	8	5.25	•	•		1.2	TID*080
DMP081	8.1	5.25	•			1.22	TID*080
DMP082	8.2	5.25	•			1.24	TID*080
DMP083	8.3	5.25	•			1.25	TID*080
DMP084	8.4	5.25	•			1.27	TID*080
DMP085	8.5	5.25		•		1.29	TID*085
DMP086	8.6	5.25				1.31	TID*085
DMP087	8.7	5.25				1.33	TID*085
DMP088	8.8	5.25				1.35	TID*085
DMP089	8.9	5.25				1.36	TID*085
DMP090	9	5.65		•		1.37	TID*090
DMP091	9.1	5.65				1.39	TID*090
DMP092	9.2	5.65				1.41	TID*090
DMP093	9.3	5.65	•			1.42	TID*090
DMP094	9.4	5.65				1.44	TID*090
DMP095	9.5	5.65		•		1.46	TID*095
DMP096	9.6	5.65	•			1.48	TID*095
DMP097	9.7	5.65				1.5	TID*095

5.65

形番 DC LPR STHAT PL ボデ DMP099 9.9 5.65 1.53 TID*09 DMP100 10 6.05 1.47 TID*10 DMP101 10.1 6.05 1.49 TID*10 DMP102 10.2 6.05 1.51 TID*10 DMP103 10.3 6.05 1.52 TID*10	1
DMP100 10 6.05 ■ 1.47 TiD*10 DMP101 10.1 6.05 ■ 1.49 TiD*10 DMP102 10.2 6.05 ■ 1.51 TiD*10 DMP103 10.3 6.05 ■ 1.52 TiD*10	
DMP101 10.1 6.05 ■ 1.49 TiD*10 DMP102 10.2 6.05 ■ 1.51 TiD*10 DMP103 10.3 6.05 ■ 1.52 TiD*10	5
DMP102 10.2 6.05 ■ 1.51 TiD*10 DMP103 10.3 6.05 ■ 1.52 TiD*10	0
DMP103 10.3 6.05 • 1.52 TID*10	0
Biiii 100 100 0.00 0 0 100 100 100 100 100 10	0
D14D404	0
DMP104 10.4 6.05 ● 1.54 TID*10	0
DMP105 10.5 6.05 ● 1.56 TID*10	5
DMP106 10.6 6.05 ● 1.58 TID*10	5
DMP107 10.7 6.05 ● 1.6 TID*10	5
DMP108 10.8 6.05 ● 1.62 TID*10	5
DMP109 10.9 6.05 ● 1.63 TID*10	5
DMP110 11 6.45 ● ■ 1.67 TID*11	0
DMP111 11.1 6.45 ● ■ 1.69 TID*11	0
DMP112 11.2 6.45 ● ■ 1.71 TID*11	0
DMP113 11.3 6.45 ● 1.72 TID*11	0
DMP114 11.4 6.45 ● 1.74 TID*11	0
DMP115 11.5 6.45 ● 1.76 TID*11	5
DMP116 11.6 6.45 ● 1.78 TID*11	5
DMP117 11.7 6.45 ● ■ 1.8 TID*11	5
DMP118 11.8 6.45 ● 1.82 TID*11	5
DMP119 11.9 6.45 ● 1.83 TID*11	5
DMP120 12 6.8 ● ■ 1.82 TID*12	20
DMP121 12.1 6.8 ● ■ 1.84 TID*12	20
DMP122 12.2 6.8 ● ■ 1.86 TID*12	20
DMP123 12.3 6.8 ● ■ 1.87 TID*12	20
DMP124 12.4 6.8 ● ■ 1.89 TID*12	20
DMP125 12.5 6.8 ● ■ 1.91 TID*12	25
DMP126 12.6 6.8 ● ■ 1.93 TID*12	25
DMP127 12.7 6.8 ● ■ 1.95 TID*12	25
DMP128 12.8 6.8 ● ■ 1.97 TID*12	25
DMP129 12.9 6.8 ■ 1.98 TID*12	25
DMP130 13 7.4 ● ● 1.96 TID*13	80
DMP131 13.1 7.4 ● 1.98 TID*13	80
DMP132 13.2 7.4 ● 2 TID*13	80
DMP133 13.3 7.4 ● ● 2.01 TID*13	80
DMP134 13.4 7.4 ● 2.03 TID*13	80
DMP135 13.5 7.4 ● ● 2.05 TID*13	35
DMP136 13.6 7.4 ■ 2.07 TID*13	35
DMP137 13.7 7.4 ● ● 2.09 TID*13	35


ø6 - ø19.9 =1 ケース 2 個入り ø20 - ø25.9 =1 ケース 1 個入り

DMP098

TID*095... *2022 年 3 月発売予定

1.52

DMP 汎用ヘッド

Р	鋼	☆	*	
М	ステンレス	*	☆	
K	鋳鉄	*	☆	
N	非鉄金属	☆	☆	
S	耐熱合金	*	☆	
н	高硬度材	*	$\stackrel{\wedge}{\nabla}$	

 \star M ステンレス 鋳鉄 * $\stackrel{\wedge}{\nabla}$ ☆☆ 非鉄金属 * ☆ 耐熱合金 * H 高硬度材

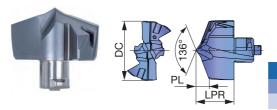
コーティング

★:第一選択 ☆:第二選択

	н	高硬度材		*	☆			
形番		DC	LPR	AH725 ^Ц	AH9130	ング	PL	ボディ
DMP138		13.8	7.4	•	•		2.11	TID*135
DMP139		13.9	7.4	•	•		2.12	TID*135
DMP140		14	7.95		•		2.12	TID*140
DMP141		14.1	7.95	•	•		2.14	TID*140
DMP142		14.2	7.95		•		2.16	TID*140
DMP143		14.3	7.95		•		2.17	TID*140
DMP144		14.4	7.95				2.19	TID*140
DMP145		14.5	7.95		•		2.21	TID*145
DMP146		14.6	7.95	•	•		2.23	TID*145
DMP147		14.7	7.95	•			2.25	TID*145
DMP148		14.8	7.95	•			2.27	TID*145
DMP149		14.9	7.95	•			2.28	TID*145
DMP150		15	8.53	•	_		2.27	TID*150
DMP151		15.1	8.53	•			2.29	TID*150
DMP152		15.2	8.53	-	•		2.31	TID*150
DMP153		15.3	8.53	•	•		2.32	TID*150
DMP154		15.4	8.53	•	_		2.34	TID*150
DMP155		15.5	8.53	•			2.36	TID*150
DMP156		15.6	8.53	•			2.38	TID*150
DMP157		15.7	8.53		•		2.4	TID*150
DMP158		15.8	8.53	•	•		2.42	TID*150
DMP159		15.9	8.53	•			2.43	TID*150
DMP160		16	9.1	•	•		2.42	TID*160
DMP161		16.1	9.1	•	•		2.44	TID*160
DMP162		16.2	9.1	•			2.46	TID*160
DMP163		16.3	9.1	•	•		2.47	TID*160
DMP164		16.4	9.1	0			2.49	TID*160
DMP165		16.5	9.1	<u>•</u>	•		2.51	TID*160
DMP166		16.6	9.1	•			2.53	TID*160
DMP167		16.7	9.1	•	_		2.55	TID*160
DMP168		16.8 16.9	9.1	•			2.58	TID*160
DMP169				•	•			TID*160
DMP171		17	9.7	•	_		2.59	TID*170
DMP171 DMP172		17.1 17.2	9.7				2.61	TID*170 TID*170
DMP173		17.2	9.7	•			2.64	TID*170
DMP174		17.3	9.7	•			2.66	TID*170
DMP175		17.5	9.7	•	•		2.68	TID*170
DMP176		17.6	9.7	•	_		2.7	TID*170
DMP177		17.7	9.7	•	_		2.72	TID*170
DMP178		17.8	9.7	•	•		2.74	TID*170
DMP179		17.9	9.7	•	_		2.75	TID*170
21411 110		17.5	0.7		_			110 170

				7 1	- /		
形番	DC	LPR	AH725	AH9130		PL	ボディ
DMP180	18	10.3	•	•		2.73	TID*180
DMP181	18.1	10.3	•			2.75	TID*180
DMP182	18.2	10.3	•			2.77	TID*180
DMP183	18.3	10.3	•	•		2.78	TID*180
DMP184	18.4	10.3	•			2.8	TID*180
DMP185	18.5	10.3	•	•		2.82	TID*180
DMP186	18.6	10.3	•			2.84	TID*180
DMP187	18.7	10.3	•			2.86	TID*180
DMP188	18.8	10.3	•			2.88	TID*180
DMP189	18.9	10.3	•			2.89	TID*180
DMP190	19	10.8	•	•		2.88	TID*190
DMP1905	19.05	10.8	•			2.89	TID*190
DMP191	19.1	10.8	•			2.9	TID*190
DMP192	19.2	10.8	•			2.92	TID*190
DMP1927	19.27	10.8	•			2.93	TID*190
DMP193	19.3	10.8	•	•		2.93	TID*190
DMP194	19.4	10.8	•	•		2.95	TID*190
DMP195	19.5	10.8	•	•		2.97	TID*190
DMP196	19.6	10.8	•			2.99	TID*190
DMP197	19.7	10.8	•			3.01	TID*190
DMP198	19.8	10.8	•	•		3.03	TID*190
DMP199	19.9	10.8	•			3.04	TID*190
DMP200	20	11.4	•	•		3.02	TID*200
DMP201	20.1	11.4	•	•		3.04	TID*200
DMP202	20.2	11.4	•			3.06	TID*200
DMP203	20.3	11.4	•			3.07	TID*200
DMP204	20.4	11.4	•			3.09	TID*200
DMP205	20.5	11.4	•	•		3.11	TID*200
DMP206	20.6	11.4	•			3.13	TID*200
DMP207	20.7	11.4	•			3.15	TID*200
DMP208	20.8	11.4	•			3.17	TID*200
DMP209	20.9	11.4	•			3.18	TID*200
DMP210	21	11.98	•	•		3.18	TID*210
DMP211	21.1	11.98	•			3.2	TID*210
DMP212	21.2	11.98	•			3.22	TID*210
DMP213	21.3	11.98	•			3.23	TID*210
DMP214	21.4	11.98	•			3.25	TID*210
DMP215	21.5	11.98	•			3.27	TID*210
DMP216	21.6	11.98	•			3.29	TID*210
DMP217	21.7	11.98	•			3.31	TID*210
DMP218	21.8	11.98	•			3.33	TID*210
DMP219	21.9	11.98	•			3.34	TID*210

ø6 - ø19.9 =1 ケース 2 個入り ø20 - ø25.9 =1 ケース 1 個入り


Р	鋼	☆	*	
М	ステンレス	*	☆	
K	鋳鉄	*	☆	
N	非鉄金属	☆	$\stackrel{\wedge}{\sim}$	
S	耐熱合金	*	☆	
н	高硬度材	*	\$	

★:第一選択 ☆:第二選択

Н	高硬度材	•	*	$\stackrel{\wedge}{\sim}$			☆:第二選択
形番	DC	LPR	AH725 ^Ц	AH9130	ング	PL	ボディ
DMP220	22	12.56	•			3.32	TID*220
DMP221	22.1	12.56	•			3.34	TID*220
DMP222	22.2	12.56	•			3.36	TID*220
DMP223	22.3	12.56	•	•		3.37	TID*220
DMP224	22.4	12.56	•			3.39	TID*220
DMP225	22.5	12.56	•			3.41	TID*220
DMP226	22.6	12.56	•			3.43	TID*220
DMP227	22.7	12.56	•			3.45	TID*220
DMP228	22.8	12.56	•			3.47	TID*220
DMP229	22.9	12.56	•			3.48	TID*220
DMP230	23	13.13	•			3.46	TID*230
DMP231	23.1	13.13	•			3.48	TID*230
DMP232	23.2	13.13	•			3.5	TID*230
DMP233	23.3	13.13	•			3.51	TID*230
DMP234	23.4	13.13	•			3.53	TID*230
DMP235	23.5	13.13	•			3.55	TID*230
DMP236	23.6	13.13	•			3.57	TID*230
DMP237	23.7	13.13	•			3.59	TID*230
DMP238	23.8	13.13	•			3.61	TID*230
DMP239	23.9	13.13	•			3.62	TID*230
DMP240	24	13.7	•	•		3.62	TID*240
DMP241	24.1	13.7	•			3.64	TID*240
DMP242	24.2	13.7	•			3.66	TID*240
DMP243	24.3	13.7	•			3.67	TID*240
DMP244	24.4	13.7	•			3.69	TID*240
DMP245	24.5	13.7	•			3.71	TID*240
DMP246	24.6	13.7	•			3.73	TID*240
DMP247	24.7	13.7	•			3.75	TID*240
DMP248	24.8	13.7	•			3.77	TID*240
DMP249	24.9	13.7				3.78	TID*240
DMP250	25	14.3		•		3.8	TID*250
DMP251	25.1	14.3				3.82	TID*250
DMP252	25.2	14.3				3.84	TID*250
DMP253	25.3	14.3				3.85	TID*250
DMP254	25.4	14.3				3.87	TID*250
DMP255	25.5	14.3				3.89	TID*250
DMP256	25.6	14.3	•			3.91	TID*250
DMP2567	25.67	14.3				3.92	TID*250
DMP257	25.7	14.3				3.93	TID*250
DMP258	25.8	14.3				3.95	TID*250
DMP259	25.9	14.3				3.96	TID*250

ø6 - ø19.9 =1 ケース 2 個入り ø20 - ø25.9 =1 ケース 1 個入り

DMC 高精度加工ヘッド

工具径 ヘッド径公差 +0.018 / 0 ø6 - ø17.9 ø18 - ø25.9 +0.021 / 0

Р	鋼	*	
M	ステンレス	*	
K	鋳鉄	*	
N	非鉄金属	☆	
S	耐熱合金	*	
Н	高硬度材	*	

Р	鋼	*	
M	ステンレス	*	
K	鋳鉄	*	
N	非鉄金属	☆	
S	耐熱合金	*	
н	高硬度材	*	

コーティング

★:第一選択 ☆:第二選択

н	高硬度材		*				
形番	DC	LPR	AH9130 ^Ц	・ティン	ノグ	PL	ボディ
DMC060	6	4	•			1.24	TID*060
DMC061	6.1	4	•			1.26	TID*060
DMC062	6.2	4	•			1.28	TID*060
DMC063	6.3	4	•			1.3	TID*060
DMC064	6.4	4	•			1.32	TID*060
DMC065	6.5	4.3	•			1.33	TID*065
DMC066	6.6	4.3	•			1.35	TID*065
DMC067	6.7	4.3	•			1.37	TID*065
DMC068	6.8	4.3	•			1.39	TID*065
DMC069	6.9	4.3				1.41	TID*065
DMC070	7	4.9				1.48	TID*070
DMC071	7.1	4.9				1.5	TID*070
DMC072	7.2	4.9				1.52	TID*070
DMC073	7.3	4.9	•			1.54	TID*070
DMC074	7.4	4.9				1.56	TID*070
DMC075	7.5	4.9	•			1.58	TID*075
DMC076	7.6	4.9	•			1.6	TID*075
DMC077	7.7	4.9	•			1.62	TID*075
DMC078	7.8	4.9	•			1.64	TID*075
DMC079	7.9	4.9	•			1.66	TID*075
DMC080	8	5.4	•			1.62	TID*080
DMC081	8.1	5.4	•			1.64	TID*080
DMC082	8.2	5.4	•			1.66	TID*080
DMC083	8.3	5.4	0			1.68	TID*080
DMC084	8.4	5.4	•			1.7	TID*080
DMC085	8.5	5.4 5.4	•			1.72	TID*085
DMC086 DMC087	8.6 8.7	5.4	•			1.74	TID*085
DMC087	8.8	5.4	•	_		1.78	TID*085
DMC089	8.9	5.4	•			1.8	TID*085
DMC099	9	5.8	•			1.91	TID*090
DMC091	9.1	5.8	•			1.93	TID*090
DMC092	9.2	5.8	•			1.95	TID*090
DMC093	9.3	5.8	•			1.97	TID*090
DMC094	9.4	5.8	•			1.99	TID*090
DMC095	9.5	5.8	•			2.01	TID*095
DMC096	9.6	5.8	•			2.03	TID*095
DMC097	9.7	5.8	•			2.05	TID*095
DMC098	9.8	5.8	•			2.07	TID*095
DMC099	9.9	5.8	•			2.09	TID*095
DMC100	10	6.67	•			2.09	TID*100
DMC101	10.1	6.67	•			2.11	TID*100

			- 71		
形番	DC	LPR	AH9130	PL	ボディ
DMC102	10.2	6.67		2.13	TID*100
DMC103	10.3	6.67		2.15	TID*100
DMC104	10.4	6.67		2.17	TID*100
DMC105	10.5	6.67		2.19	TID*105
DMC106	10.6	6.67		2.21	TID*105
DMC107	10.7	6.67		2.23	TID*105
DMC108	10.8	6.67		2.25	TID*105
DMC109	10.9	6.67		2.27	TID*105
DMC110	11	7.1		2.32	TID*110
DMC111	11.1	7.1		2.34	TID*110
DMC112	11.2	7.1		2.36	TID*110
DMC113	11.3	7.1		2.38	TID*110
DMC114	11.4	7.1		2.4	TID*110
DMC115	11.5	7.1		2.42	TID*115
DMC116	11.6	7.1		2.44	TID*115
DMC117	11.7	7.1		2.46	TID*115
DMC118	11.8	7.1		2.48	TID*115
DMC119	11.9	7.1		2.5	TID*115
DMC120	12	7.43		2.45	TID*120
DMC121	12.1	7.43		2.47	TID*120
DMC122	12.2	7.43		2.49	TID*120
DMC123	12.3	7.43		2.51	TID*120
DMC124	12.4	7.43		2.53	TID*120
DMC125	12.5	7.43		2.55	TID*125
DMC126	12.6	7.43		2.57	TID*125
DMC127	12.7	7.43		2.59	TID*125
DMC128	12.8	7.43		2.61	TID*125
DMC129	12.9	7.43		2.63	TID*125
DMC130	13	8.15		2.71	TID*130
DMC131	13.1	8.15		2.73	TID*130
DMC132	13.2	8.15		2.75	TID*130
DMC133	13.3	8.15		2.77	TID*130
DMC134	13.4	8.15		2.79	TID*130
DMC135	13.5	8.15		2.81	TID*135
DMC136	13.6	8.15		2.83	TID*135
DMC137	13.7	8.15		2.85	TID*135
DMC138	13.8	8.15		2.87	TID*135
DMC139	13.9	8.15		2.89	TID*135
DMC140	14	8.76		2.93	TID*140
DMC141	14.1	8.76		2.95	TID*140
DMC142	14.2	8.76		2.97	TID*140
DMC143	14.3	8.76		2.99	TID*140

ø6 - ø19.9 =1 ケース 2 個入り ø20 - ø25.9 =1 ケース 1 個入り

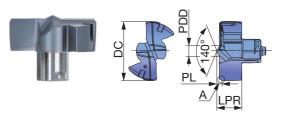
Р	鋼	\star	
М	ステンレス	*	
K	鋳鉄	*	
N	非鉄金属	☆	
S	耐熱合金	*	
н	高硬度材	*	

Р	鋼	*	
M	ステンレス	*	
K	鋳鉄	*	
N	非鉄金属	☆	
S	耐熱合金	*	
Н	高硬度材	*	

H	高硬度材	•	*				
形番	DC	LPR	АН9130 ^Ц	ティン	ング	PL	ボディ
DMC144	14.4	8.76	•			3.01	TID*140
DMC145	14.5	8.76	•			3.03	TID*145
DMC146	14.6	8.76	•			3.05	TID*145
DMC147	14.7	8.76	•			3.07	TID*145
DMC148	14.8	8.76	•			3.09	TID*145
DMC149	14.9	8.76	•			3.11	TID*145
DMC150	15	9.44	•			3.18	TID*150
DMC151	15.1	9.44	•			3.2	TID*150
DMC152	15.2	9.44	•			3.22	TID*150
DMC153	15.3	9.44	•			3.24	TID*150
DMC154	15.4	9.44	•			3.26	TID*150
DMC155	15.5	9.44	•			3.28	TID*150
DMC156	15.6	9.44	•			3.3	TID*150
DMC157	15.7	9.44	•			3.32	TID*150
DMC158	15.8	9.44	•			3.34	TID*150
DMC159	15.9	9.44	•			3.36	TID*150
DMC160	16	10.07	•			3.39	TID*160
DMC161	16.1	10.07	•			3.41	TID*160
DMC162	16.2	10.07	•			3.43	TID*160
DMC163	16.3	10.07	•			3.45	TID*160
DMC164	16.4	10.07	•			3.47	TID*160
DMC165	16.5	10.07				3.49	TID*160
DMC166	16.6	10.07				3.51	TID*160
DMC167	16.7	10.07				3.53	TID*160
DMC168	16.8	10.07				3.55	TID*160
DMC169	16.9	10.07				3.57	TID*160
DMC170	17	10.68				3.57	TID*170
DMC171	17.1	10.68				3.59	TID*170
DMC172	17.2	10.68				3.61	TID*170
DMC173	17.3	10.68				3.63	TID*170
DMC174	17.4	10.68				3.65	TID*170
DMC175	17.5	10.68				3.67	TID*170
DMC176	17.6	10.68	•			3.69	TID*170
DMC177	17.7	10.68				3.71	TID*170
DMC178	17.8	10.68				3.73	TID*170
DMC179	17.9	10.68				3.75	TID*170
DMC180	18	11.35	•			3.78	TID*180
DMC181	18.1	11.35	•			3.8	TID*180
DMC182	18.2	11.35	•			3.82	TID*180

ø6 - ø19.9 =1 ケース	2 個人り
ø20 - ø25.9 =1 ケース	く1個入り

形番 DC LPR		3 6 2 13		コーティ	ング		
DMC184 18.4 11.35 ■ 3.86 TID*180 DMC185 18.5 11.35 ■ 3.88 TID*180 DMC186 18.6 11.35 ■ 3.92 TID*180 DMC187 18.7 11.35 ■ 3.92 TID*180 DMC188 18.8 11.35 ■ 3.94 TID*180 DMC190 19 11.91 ■ 3.99 TID*180 DMC191 19.1 11.91 ■ 4.01 TID*190 DMC191 19.1 11.91 ■ 4.03 TID*190 DMC192 19.2 11.91 ■ 4.03 TID*190 DMC1927 19.27 11.91 ■ 4.04 TID*190 DMC193 19.3 11.91 ■ 4.05 TID*190 DMC194 19.4 11.91 ■ 4.07 TID*190 DMC195 19.5 11.91 ■ 4.07 TID*190 DMC196 19.6 11.91 ■ 4.11 TID*190 DMC197 19.7 11.91	形番	DC	LPR	AH9130		PL	ボディ
DMC185 18.5 11.35 ■ 3.88 TID*180 DMC186 18.6 11.35 ■ 3.9 TID*180 DMC187 18.7 11.35 ■ 3.92 TID*180 DMC188 18.8 11.35 ■ 3.94 TID*180 DMC189 18.9 11.35 ■ 3.96 TID*180 DMC190 19 11.91 ■ 4.01 TID*190 DMC191 19.1 11.91 ■ 4.03 TID*190 DMC192 19.2 11.91 ■ 4.03 TID*190 DMC1927 19.27 11.91 ■ 4.04 TID*190 DMC193 19.3 11.91 ■ 4.05 TID*190 DMC194 19.4 11.91 ■ 4.07 TID*190 DMC195 19.5 11.91 ■ 4.11 TID*190 DMC196 19.6 11.91 ■ 4.11 TID*190	DMC183	18.3	11.35			3.84	TID*180
DMC186 18.6 11.35 ■ 3.9 TID*180 DMC187 18.7 11.35 ■ 3.92 TID*180 DMC188 18.8 11.35 ■ 3.94 TID*180 DMC189 18.9 11.35 ■ 3.96 TID*180 DMC190 19 11.91 ■ 3.99 TID*190 DMC191 19.1 11.91 ■ 4.01 TID*190 DMC192 19.2 11.91 ■ 4.03 TID*190 DMC1927 19.27 11.91 ■ 4.04 TID*190 DMC193 19.3 11.91 ■ 4.05 TID*190 DMC194 19.4 11.91 ■ 4.07 TID*190 DMC195 19.5 11.91 ■ 4.07 TID*190 DMC196 19.6 11.91 ■ 4.11 TID*190 DMC197 19.7 11.91 ■ 4.15 TID*190	DMC184	18.4	11.35			3.86	TID*180
DMC187 18.7 11.35 ■ 3.92 TID*180 DMC188 18.8 11.35 ■ 3.94 TID*180 DMC189 18.9 11.35 ■ 3.96 TID*180 DMC190 19 11.91 ■ 3.99 TID*190 DMC191 19.1 11.91 ■ 4.01 TID*190 DMC192 19.2 11.91 ■ 4.03 TID*190 DMC1927 19.27 11.91 ■ 4.04 TID*190 DMC193 19.3 11.91 ■ 4.05 TID*190 DMC194 19.4 11.91 ■ 4.07 TID*190 DMC195 19.5 11.91 ■ 4.07 TID*190 DMC196 19.6 11.91 ■ 4.11 TID*190 DMC197 19.7 11.91 ■ 4.13 TID*190 DMC198 19.8 11.91 ■ 4.15 TID*190 DMC199 19.9 11.91 ■ 4.17 TID*190 DMC200 20 12.62	DMC185	18.5	11.35			3.88	TID*180
DMC188 18.8 11.35 ■ 3.94 TID*180 DMC189 18.9 11.35 ■ 3.96 TID*180 DMC190 19 11.91 ■ 3.99 TID*190 DMC191 19.1 11.91 ■ 4.01 TID*190 DMC192 19.2 11.91 ■ 4.03 TID*190 DMC1927 19.27 11.91 ■ 4.04 TID*190 DMC193 19.3 11.91 ■ 4.05 TID*190 DMC194 19.4 11.91 ■ 4.07 TID*190 DMC195 19.5 11.91 ■ 4.09 TID*190 DMC196 19.6 11.91 ■ 4.11 TID*190 DMC197 19.7 11.91 ■ 4.13 TID*190 DMC198 19.8 11.91 ■ 4.17 TID*190 DMC200 20 12.62 ■ 4.24 TID*200	DMC186	18.6	11.35			3.9	TID*180
DMC189 18.9 11.35 3.96 TiD*180 DMC190 19 11.91 3.99 TiD*190 DMC191 19.1 11.91 4.01 TiD*190 DMC192 19.2 11.91 4.03 TiD*190 DMC1927 19.27 11.91 4.04 TiD*190 DMC193 19.3 11.91 4.05 TiD*190 DMC194 19.4 11.91 4.07 TiD*190 DMC195 19.5 11.91 4.09 TiD*190 DMC196 19.6 11.91 4.13 TiD*190 DMC197 19.7 11.91 4.13 TiD*190 DMC198 19.8 11.91 4.15 TiD*190 DMC199 19.9 11.91 4.17 TiD*190 DMC200 20 12.62 4.24 TiD*200 DMC201 20.1 12.62 4.24 TiD*200 DMC205 20.5 12.62 4.34 T	DMC187	18.7	11.35			3.92	TID*180
DMC190 19 11.91 ■ 3.99 TID*190 DMC191 19.1 11.91 ■ 4.01 TID*190 DMC192 19.2 11.91 ■ 4.03 TID*190 DMC1927 19.27 11.91 ■ 4.04 TID*190 DMC193 19.3 11.91 ■ 4.05 TID*190 DMC194 19.4 11.91 ■ 4.07 TID*190 DMC195 19.5 11.91 ■ 4.09 TID*190 DMC196 19.6 11.91 ■ 4.11 TID*190 DMC197 19.7 11.91 ■ 4.13 TID*190 DMC197 19.7 11.91 ■ 4.15 TID*190 DMC198 19.8 11.91 ■ 4.15 TID*190 DMC199 19.9 11.91 ■ 4.17 TID*00 DMC200 20 12.62 ■ 4.24 TID*20 <t< td=""><td>DMC188</td><td>18.8</td><td>11.35</td><td></td><td></td><td>3.94</td><td>TID*180</td></t<>	DMC188	18.8	11.35			3.94	TID*180
DMC191 19.1 11.91 ■ 4.01 TiD*190 DMC192 19.2 11.91 ■ 4.03 TiD*190 DMC1927 19.27 11.91 ■ 4.04 TiD*190 DMC193 19.3 11.91 ■ 4.05 TiD*190 DMC194 19.4 11.91 ■ 4.07 TiD*190 DMC195 19.5 11.91 ■ 4.09 TiD*190 DMC196 19.6 11.91 ■ 4.11 TiD*190 DMC197 19.7 11.91 ■ 4.13 TiD*190 DMC198 19.8 11.91 ■ 4.15 TiD*190 DMC199 19.9 11.91 ■ 4.17 TiD*190 DMC200 20 12.62 ■ 4.24 TiD*200 DMC201 20.1 12.62 ■ 4.26 TiD*200 DMC205 20.5 12.62 ■ 4.34 TiD*200 DMC210 21 13.2 ■ 4.4 TiD*210 <tr< td=""><td>DMC189</td><td>18.9</td><td>11.35</td><td></td><td></td><td>3.96</td><td>TID*180</td></tr<>	DMC189	18.9	11.35			3.96	TID*180
DMC192 19.2 11.91 4.03 TiD*190 DMC1927 19.27 11.91 4.04 TiD*190 DMC193 19.3 11.91 4.05 TiD*190 DMC194 19.4 11.91 4.07 TiD*190 DMC195 19.5 11.91 4.09 TiD*190 DMC196 19.6 11.91 4.11 TiD*190 DMC197 19.7 11.91 4.13 TiD*190 DMC198 19.8 11.91 4.15 TiD*190 DMC199 19.9 11.91 4.17 TiD*190 DMC200 20 12.62 4.24 TiD*200 DMC201 20.1 12.62 4.26 TiD*200 DMC205 20.5 12.62 4.34 TiD*200 DMC206 20.6 12.62 4.36 TiD*200 DMC210 21 13.2 4.4 TiD*210 DMC211 21.1 13.2 4.4 TiD*2	DMC190	19	11.91			3.99	TID*190
DMC1927 19.27 11.91 4.04 TiD*190 DMC193 19.3 11.91 4.05 TiD*190 DMC194 19.4 11.91 4.07 TiD*190 DMC195 19.5 11.91 4.09 TiD*190 DMC196 19.6 11.91 4.11 TiD*190 DMC197 19.7 11.91 4.13 TiD*190 DMC198 19.8 11.91 4.15 TiD*190 DMC199 19.9 11.91 4.17 TiD*190 DMC200 20 12.62 4.24 TiD*200 DMC201 20.1 12.62 4.26 TiD*200 DMC205 20.5 12.62 4.34 TiD*200 DMC206 20.6 12.62 4.36 TiD*200 DMC210 21 13.2 4.4 TiD*210 DMC211 21.1 13.2 4.4 TiD*210 DMC215 21.5 13.2 4.5 TiD*210	DMC191	19.1	11.91			4.01	TID*190
DMC193 19.3 11.91 ■ 4.05 TID*190 DMC194 19.4 11.91 ■ 4.07 TID*190 DMC195 19.5 11.91 ■ 4.09 TID*190 DMC196 19.6 11.91 ■ 4.11 TID*190 DMC197 19.7 11.91 ■ 4.13 TID*190 DMC198 19.8 11.91 ■ 4.15 TID*190 DMC199 19.9 11.91 ■ 4.17 TID*190 DMC200 20 12.62 ■ 4.24 TID*200 DMC201 20.1 12.62 ■ 4.26 TID*200 DMC205 20.5 12.62 ■ 4.34 TID*200 DMC206 20.6 12.62 ■ 4.36 TID*200 DMC210 21 13.2 ■ 4.4 TID*210 DMC211 21.1 13.2 ■ 4.4 TID*210 DMC215 21.5 13.2 ■ 4.5 TID*210	DMC192	19.2	11.91			4.03	TID*190
DMC194 19.4 11.91 ■ 4.07 TID*190 DMC195 19.5 11.91 ■ 4.09 TID*190 DMC196 19.6 11.91 ■ 4.11 TID*190 DMC197 19.7 11.91 ■ 4.13 TID*190 DMC198 19.8 11.91 ■ 4.15 TID*190 DMC199 19.9 11.91 ■ 4.17 TID*190 DMC200 20 12.62 ■ 4.24 TID*200 DMC201 20.1 12.62 ■ 4.26 TID*200 DMC205 20.5 12.62 ■ 4.34 TID*200 DMC206 20.6 12.62 ■ 4.36 TID*200 DMC210 21 13.2 ■ 4.4 TID*200 DMC211 21.1 13.2 ■ 4.4 TID*210 DMC215 21.5 13.2 ■ 4.5 TID*210 DMC217 21.7 13.2 ■ 4.54 TID*210	DMC1927	19.27	11.91			4.04	TID*190
DMC195 19.5 11.91 ■ 4.09 TID*190 DMC196 19.6 11.91 ■ 4.11 TID*190 DMC197 19.7 11.91 ■ 4.13 TID*190 DMC198 19.8 11.91 ■ 4.15 TID*190 DMC199 19.9 11.91 ■ 4.17 TID*190 DMC200 20 12.62 ■ 4.24 TID*200 DMC201 20.1 12.62 ■ 4.26 TID*200 DMC205 20.5 12.62 ■ 4.34 TID*200 DMC206 20.6 12.62 ■ 4.36 TID*200 DMC210 21 13.2 ■ 4.4 TID*200 DMC211 21.1 13.2 ■ 4.4 TID*210 DMC217 21.7 13.2 ■ 4.54 TID*210 DMC218 21.8 13.2 ■ 4.56 TID*210	DMC193	19.3	11.91			4.05	TID*190
DMC196 19.6 11.91 4.11 TiD*190 DMC197 19.7 11.91 4.13 TiD*190 DMC198 19.8 11.91 4.15 TiD*190 DMC199 19.9 11.91 4.17 TiD*190 DMC200 20 12.62 4.24 TiD*200 DMC201 20.1 12.62 4.26 TiD*200 DMC205 20.5 12.62 4.34 TiD*200 DMC206 20.6 12.62 4.36 TiD*200 DMC210 21 13.2 4.4 TiD*200 DMC211 21.1 13.2 4.4 TiD*210 DMC215 21.5 13.2 4.5 TiD*210 DMC217 21.7 13.2 4.54 TiD*210 DMC218 21.8 13.2 4.56 TiD*210 DMC218 21.8 13.2 4.6 TiD*220 DMC220 22 13.84 4.6 TiD*220 DMC221 22.1 13.84 4.6 TiD*220	DMC194	19.4	11.91			4.07	TID*190
DMC197 19.7 11.91 4.13 TID*190 DMC198 19.8 11.91 4.15 TID*190 DMC199 19.9 11.91 4.17 TID*190 DMC200 20 12.62 4.24 TID*200 DMC201 20.1 12.62 4.26 TID*200 DMC205 20.5 12.62 4.34 TID*200 DMC206 20.6 12.62 4.36 TID*200 DMC210 21 13.2 4.4 TID*200 DMC211 21.1 13.2 4.42 TID*210 DMC215 21.5 13.2 4.5 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.6 TID*220 DMC222 22.2 13.84 4.6 TID*220	DMC195	19.5	11.91			4.09	TID*190
DMC198 19.8 11.91 4.15 TID*190 DMC199 19.9 11.91 4.17 TID*190 DMC200 20 12.62 4.24 TID*200 DMC201 20.1 12.62 4.26 TID*200 DMC205 20.5 12.62 4.34 TID*200 DMC206 20.6 12.62 4.36 TID*200 DMC210 21 13.2 4.4 TID*210 DMC211 21.1 13.2 4.42 TID*210 DMC215 21.5 13.2 4.5 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.64 TID*220 DMC230 23 14.51 4.84 TID*220	DMC196	19.6	11.91			4.11	TID*190
DMC199 19.9 11.91 4.17 TID*190 DMC200 20 12.62 4.24 TID*200 DMC201 20.1 12.62 4.26 TID*200 DMC205 20.5 12.62 4.34 TID*200 DMC206 20.6 12.62 4.36 TID*200 DMC210 21 13.2 4.4 TID*210 DMC211 21.1 13.2 4.42 TID*210 DMC215 21.5 13.2 4.5 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC225 22.5 13.84 4.6 TID*220 DMC230 23 14.51 4.84 TID*220	DMC197	19.7	11.91			4.13	TID*190
DMC200 20 12.62 4.24 TID*200 DMC201 20.1 12.62 4.26 TID*200 DMC205 20.5 12.62 4.34 TID*200 DMC206 20.6 12.62 4.36 TID*200 DMC210 21 13.2 4.4 TID*210 DMC211 21.1 13.2 4.42 TID*210 DMC215 21.5 13.2 4.5 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.64 TID*220 DMC223 22.5 13.84 4.66 TID*220 DMC230 23 14.51 4.84 TID*220 DMC235 23.5 14.51 4.94 TID*230	DMC198	19.8	11.91			4.15	TID*190
DMC201 20.1 12.62 4.26 TID*200 DMC205 20.5 12.62 4.34 TID*200 DMC206 20.6 12.62 4.36 TID*200 DMC210 21 13.2 4.4 TID*210 DMC211 21.1 13.2 4.42 TID*210 DMC215 21.5 13.2 4.54 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.66 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC230 23 14.51 4.84 TID*220 DMC235 23.5 14.51 4.94 TID*230 DMC240 24 15.11 5.03 TID*240	DMC199	19.9	11.91			4.17	TID*190
DMC205 20.5 12.62 4.34 TID*200 DMC206 20.6 12.62 4.36 TID*200 DMC210 21 13.2 4.4 TID*210 DMC211 21.1 13.2 4.42 TID*210 DMC215 21.5 13.2 4.5 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC223 22.5 13.84 4.7 TID*220 DMC230 23 14.51 4.84 TID*230 DMC235 23.5 14.51 5.03 TID*230 <td>DMC200</td> <td>20</td> <td>12.62</td> <td></td> <td></td> <td>4.24</td> <td>TID*200</td>	DMC200	20	12.62			4.24	TID*200
DMC206 20.6 12.62 4.36 TID*200 DMC210 21 13.2 4.4 TID*210 DMC211 21.1 13.2 4.42 TID*210 DMC215 21.5 13.2 4.5 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC225 22.5 13.84 4.7 TID*220 DMC230 23 14.51 4.84 TID*230 DMC235 23.5 14.51 5.03 TID*230 DMC240 24 15.11 5.03 TID*240	DMC201	20.1	12.62			4.26	TID*200
DMC210 21 13.2 4.4 TID*210 DMC211 21.1 13.2 4.42 TID*210 DMC215 21.5 13.2 4.5 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC223 22.3 13.84 4.7 TID*220 DMC230 23 14.51 4.84 TID*230 DMC230 23 14.51 4.94 TID*230 DMC235 23.5 14.51 5.03 TID*240 DMC240 24 15.11 5.03 TID*240 DMC245 24.5 15.11 5.13 TID*250 DMC250 25 15.78 5.28 TID*250 <t< td=""><td>DMC205</td><td>20.5</td><td>12.62</td><td></td><td></td><td>4.34</td><td>TID*200</td></t<>	DMC205	20.5	12.62			4.34	TID*200
DMC211 21.1 13.2 4.42 TID*210 DMC215 21.5 13.2 4.5 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC225 22.5 13.84 4.7 TID*220 DMC230 23 14.51 4.84 TID*230 DMC230 23 14.51 4.94 TID*230 DMC240 24 15.11 5.03 TID*240 DMC245 24.5 15.11 5.13 TID*240 DMC250 25 15.78 5.28 TID*250 DMC253 25.3 15.78 5.34 TID*250 DMC2567 25.67 15.78 5.42 TID*250	DMC206	20.6	12.62			4.36	TID*200
DMC215 21.5 13.2 4.5 TID*210 DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC225 22.5 13.84 4.7 TID*220 DMC230 23 14.51 4.84 TID*230 DMC235 23.5 14.51 4.94 TID*230 DMC240 24 15.11 5.03 TID*240 DMC245 24.5 15.11 5.13 TID*240 DMC250 25 15.78 5.28 TID*250 DMC253 25.3 15.78 5.34 TID*250 DMC256 25.5 15.78 5.38 TID*250 DMC256 25.67 15.78 5.42 TID*250 <td>DMC210</td> <td>21</td> <td>13.2</td> <td></td> <td></td> <td>4.4</td> <td>TID*210</td>	DMC210	21	13.2			4.4	TID*210
DMC217 21.7 13.2 4.54 TID*210 DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC225 22.5 13.84 4.7 TID*220 DMC230 23 14.51 4.84 TID*230 DMC235 23.5 14.51 4.94 TID*230 DMC240 24 15.11 5.03 TID*240 DMC245 24.5 15.11 5.13 TID*240 DMC250 25 15.78 5.28 TID*250 DMC253 25.3 15.78 5.34 TID*250 DMC255 25.5 15.78 5.38 TID*250 DMC2567 25.67 15.78 5.42 TID*250	DMC211	21.1	13.2			4.42	TID*210
DMC218 21.8 13.2 4.56 TID*210 DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC225 22.5 13.84 4.7 TID*220 DMC230 23 14.51 4.84 TID*230 DMC235 23.5 14.51 4.94 TID*230 DMC240 24 15.11 5.03 TID*240 DMC245 24.5 15.11 5.13 TID*240 DMC250 25 15.78 5.28 TID*250 DMC253 25.3 15.78 5.34 TID*250 DMC255 25.5 15.78 5.38 TID*250 DMC2567 25.67 15.78 5.42 TID*250	DMC215	21.5	13.2			4.5	TID*210
DMC220 22 13.84 4.6 TID*220 DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC225 22.5 13.84 4.7 TID*220 DMC230 23 14.51 4.84 TID*230 DMC235 23.5 14.51 4.94 TID*230 DMC240 24 15.11 5.03 TID*240 DMC245 24.5 15.11 5.13 TID*240 DMC250 25 15.78 5.28 TID*250 DMC253 25.3 15.78 5.34 TID*250 DMC255 25.5 15.78 5.38 TID*250 DMC2567 25.67 15.78 5.42 TID*250	DMC217	21.7	13.2			4.54	TID*210
DMC221 22.1 13.84 4.62 TID*220 DMC222 22.2 13.84 4.64 TID*220 DMC223 22.3 13.84 4.66 TID*220 DMC225 22.5 13.84 4.7 TID*220 DMC230 23 14.51 4.84 TID*230 DMC235 23.5 14.51 4.94 TID*230 DMC240 24 15.11 5.03 TID*240 DMC245 24.5 15.11 5.13 TID*240 DMC250 25 15.78 5.28 TID*250 DMC253 25.3 15.78 5.34 TID*250 DMC255 25.5 15.78 5.38 TID*250 DMC2567 25.67 15.78 5.42 TID*250	DMC218	21.8	13.2			4.56	TID*210
DMC222 22.2 13.84 ■ 4.64 TID*220 DMC223 22.3 13.84 ■ 4.66 TID*220 DMC225 22.5 13.84 ■ 4.7 TID*220 DMC230 23 14.51 ■ 4.84 TID*230 DMC235 23.5 14.51 ■ 4.94 TID*230 DMC240 24 15.11 ■ 5.03 TID*240 DMC245 24.5 15.11 ■ 5.13 TID*240 DMC250 25 15.78 ■ 5.28 TID*250 DMC253 25.3 15.78 ■ 5.34 TID*250 DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250	DMC220	22	13.84			4.6	TID*220
DMC223 22.3 13.84 ■ 4.66 TID*220 DMC225 22.5 13.84 ■ 4.7 TID*220 DMC230 23 14.51 ■ 4.84 TID*230 DMC235 23.5 14.51 ■ 4.94 TID*230 DMC240 24 15.11 ■ 5.03 TID*240 DMC245 24.5 15.11 ■ 5.13 TID*240 DMC250 25 15.78 ■ 5.28 TID*250 DMC253 25.3 15.78 ■ 5.34 TID*250 DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250	DMC221	22.1	13.84			4.62	TID*220
DMC225 22.5 13.84 ■ 4.7 TID*220 DMC230 23 14.51 ■ 4.84 TID*230 DMC235 23.5 14.51 ■ 4.94 TID*230 DMC240 24 15.11 ■ 5.03 TID*240 DMC245 24.5 15.11 ■ 5.13 TID*240 DMC250 25 15.78 ■ 5.28 TID*250 DMC253 25.3 15.78 ■ 5.34 TID*250 DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250	DMC222	22.2	13.84			4.64	TID*220
DMC230 23 14.51 ■ 4.84 TID*230 DMC235 23.5 14.51 ■ 4.94 TID*230 DMC240 24 15.11 ■ 5.03 TID*240 DMC245 24.5 15.11 ■ 5.13 TID*240 DMC250 25 15.78 ■ 5.28 TID*250 DMC253 25.3 15.78 ■ 5.34 TID*250 DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250	DMC223	22.3	13.84			4.66	TID*220
DMC235 23.5 14.51 ■ 4.94 TID*230 DMC240 24 15.11 ■ 5.03 TID*240 DMC245 24.5 15.11 ■ 5.13 TID*240 DMC250 25 15.78 ■ 5.28 TID*250 DMC253 25.3 15.78 ■ 5.34 TID*250 DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250	DMC225	22.5	13.84			4.7	TID*220
DMC240 24 15.11 ■ 5.03 TID*240 DMC245 24.5 15.11 ■ 5.13 TID*240 DMC250 25 15.78 ■ 5.28 TID*250 DMC253 25.3 15.78 ■ 5.34 TID*250 DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250	DMC230	23	14.51			4.84	TID*230
DMC245 24.5 15.11 ■ 5.13 TID*240 DMC250 25 15.78 ■ 5.28 TID*250 DMC253 25.3 15.78 ■ 5.34 TID*250 DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250	DMC235	23.5	14.51			4.94	TID*230
DMC250 25 15.78 ■ 5.28 TID*250 DMC253 25.3 15.78 ■ 5.34 TID*250 DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250	DMC240	24	15.11			5.03	TID*240
DMC253 25.3 15.78 ■ 5.34 TID*250 DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250	DMC245	24.5	15.11			5.13	TID*240
DMC255 25.5 15.78 ■ 5.38 TID*250 DMC2567 25.67 15.78 ■ 5.42 TID*250		25	15.78			5.28	TID*250
DMC2567 25.67 15.78 ● 5.42 TID*250	DMC253	25.3	15.78			5.34	TID*250
	DMC255	25.5	15.78			5.38	TID*250
DMC259 25.9 15.78 •	DMC2567	25.67	15.78			5.42	TID*250
	DMC259	25.9	15.78			5.46	TID*250


●:設定アイテム

DMF 座繰り穴加工用ヘッド

M ステンレス

鋳鉄

N 非鉄金属

 \star \star

☆

工具径	ヘッド径公差
ø6 - ø17.9	+0.018 / 0
a18 - a19 9	±0.021 / 0

			7	11	27
				ティ	ヾ゙゙゙゙゙゙゙゙゙゙゙
Н	高	硬度材	*		
S	耐	熱合金	*		
N	非	鉄金属	☆		
K	鋳	鉄	*		
М	ス	テンレス	*		
Р	鋼		*		

★:第一選択 ☆:第二選択

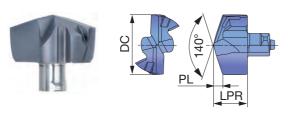
	N	非	跃金属		W						
	S	耐	熱合金		*						
	Н	高	更度材		*						
形	番		DC	LPR	AH9130 ^µ	・ティ	ング	CHW	PL	PDD	ボディ
DMF0	60		6	3.01	•			0.4	0.61	1.15	TID*060
DMF0	65		6.5	3.28	•			0.4	0.68	1.54	TID*065
DMF0	68		6.8	3.28	•			0.4	0.68	1.54	TID*065
DMF0	70		7	3.58	•			0.4	0.68	1.54	TID*070
DMF0	75		7.5	3.58	•			0.4	0.68	1.54	TID*075
DMF0	80		8	4.39	•			0.7	1.09	2.44	TID*080
DMF0	81		8.1	4.39	•			0.7	1.09	2.44	TID*080
DMF0	85		8.5	4.39	•			0.7	1.09	2.44	TID*085
DMF0	86		8.6	4.39	•			0.7	1.09	2.44	TID*085
DMF0	87		8.7	4.39	•			0.7	1.09	2.44	TID*085
DMF0	88		8.8	4.39	•			0.7	1.09	2.44	TID*085
DMF0	90		9	4.61	•			0.7	1.11	2.55	TID*090
DMF0	95		9.5	4.61	•			0.7	1.11	2.55	TID*095
DMF1	00		10	4.72	•			0.7	1.17	2.89	TID*100
DMF1	01		10.1	4.72	•			0.7	1.17	2.89	TID*100
DMF1	03		10.3	4.72	•			0.7	1.17	2.89	TID*100
DMF1	04		10.4	4.72	•			0.7	1.17	2.89	TID*100
DMF1	05		10.5	4.72	•			0.7	1.17	2.89	TID*105
DMF1	06		10.6	4.72	•			0.7	1.17	2.89	TID*105
DMF1	07		10.7	4.72	•			0.7	1.17	2.89	TID*105
DMF1	80		10.8	4.72	•			0.7	1.17	2.89	TID*105
DMF1	10		11	4.9				0.7	1.25	2.98	TID*110
DMF1	15		11.5	4.9				0.7	1.25	2.98	TID*115
DMF1	17		11.7	4.9				0.7	1.25	2.98	TID*115
DMF1	20		12	5.21				0.7	1.26	3.13	TID*120
DMF1	21		12.1	5.21				0.7	1.26	3.13	TID*120
DMF1	22		12.2	5.21				0.7	1.26	3.13	TID*120
DMF1	23		12.3	5.21				0.7	1.26	3.13	TID*120
DMF1	24		12.4	5.21				0.7	1.26	3.13	TID*120
DMF1	25		12.5	5.21				0.7	1.26	3.13	TID*125
DMF1	26		12.6	5.21				0.7	1.26	3.13	TID*125
DMF12	27		12.7	5.21				0.7	1.26	3.13	TID*125
DMF13	30		13	5.53				0.7	1.28	3.52	TID*130
DMF13	31		13.1	5.53				0.7	1.28	3.52	TID*130
DMF13	33		13.3	5.53				0.7	1.28	3.52	TID*130
DMF13	35		13.5	5.53				0.7	1.28	3.52	TID*135
DMF13	37		13.7	5.53	•			0.7	1.28	3.52	TID*135
DMF13	38		13.8	5.53				0.7	1.28	3.52	TID*135
DMF13	39		13.9	5.53				0.7	1.28	3.52	TID*135

形番	DC	LPR	AH9130		CHW	PL	PDD	ボディ
DMF140	14	5.96	•		0.7	1.31	3.81	TID*140
DMF141	14.1	5.96			0.7	1.31	3.81	TID*140
DMF142	14.2	5.96			0.7	1.31	3.81	TID*140
DMF143	14.3	5.96			0.7	1.31	3.81	TID*140
DMF144	14.4	5.96	•		0.7	1.31	3.81	TID*140
DMF145	14.5	5.96	•		0.7	1.31	3.81	TID*145
DMF150	15	6.43			0.7	1.35	4.24	TID*150
DMF152	15.2	6.43			0.7	1.35	4.24	TID*150
DMF155	15.5	6.43			0.7	1.35	4.24	TID*150
DMF157	15.7	6.43			0.7	1.35	4.24	TID*150
DMF158	15.8	6.43			0.7	1.35	4.24	TID*150
DMF160	16	6.84			0.7	1.39	4.06	TID*160
DMF161	16.1	6.84	•		0.7	1.39	4.06	TID*160
DMF165	16.5	6.84			0.7	1.39	4.06	TID*160
DMF167	16.7	6.84	•		0.7	1.39	4.06	TID*160
DMF170	17	7.15	•		0.7	1.4	4.14	TID*170
DMF175	17.5	7.15			0.7	1.4	4.14	TID*170
DMF179	17.9	7.15			0.7	1.4	4.14	TID*170
DMF180	18	7.45	•		0.7	1.42	4.16	TID*180
DMF185	18.5	7.45			0.7	1.42	4.16	TID*180
DMF190	19	7.79			0.7	1.44	4.25	TID*190
DMF195	19.5	7.79			0.7	1.44	4.25	TID*190
DMF198	19.8	7.79			0.7	1.44	4.25	TID*190
DMF200	20	9.12			0.7	1.77	6.56	TID*200
DMF205	20.5	9.12			0.7	1.77	6.56	TID*200
DMF210	21	9.54			0.7	1.79	6.92	TID*210
DMF215	21.5	9.54			0.7	1.79	6.92	TID*210
DMF218	21.8	9.54			0.7	1.79	6.92	TID*210
DMF220	22	9.86			0.7	1.81	7.13	TID*220
DMF225	22.5	9.86			0.7	1.81	7.13	TID*220
DMF230	23	10.28			0.7	1.83	7.42	TID*230
DMF235	23.5	10.28			0.7	1.83	7.42	TID*230
DMF240	24	10.71			0.7	1.86	7.45	TID*240
DMF245	24.5	10.71			0.7	1.86	7.45	TID*240
DMF250	25	11.15			0.7	1.9	7.54	TID*250
DMF254	25.4	11.15			0.7	1.9	7.54	TID*250
DMF255	25.5	11.15			0.7	1.9	7.54	TID*250

25.9 11.15

0.7

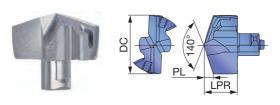
DMF259


DMF139 13.9 5.53 ● 0.7 1.28 3.52 TID*135... ø6 - ø19.9 = 1 ケース 2 個入り ø20 - ø25.9 = 1 ケース 1 個入り

●: 2022 年 1 月発売予定 ●: 設定アイテム

1.9 7.54 TID*250...

DMH 刃先強化型


工具径 ヘッド径公差 ø10 - ø19.5 ±0.01

M ステンレス * * 鋳鉄 非鉄金属 ☆ 耐熱合金

★:第一選択 ☆:第二選択

н	高硬度材		\star			☆:第二選折
形番	DC	LPR	AH9130 H	ティング	PL	ボディ
DMH100	10	6.05	•		1.47	TID*100
DMH103	10.3	6.05	•		1.52	TID*100
DMH105	10.5	6.05	•		1.56	TID*105
DMH108	10.8	6.05	•		1.62	TID*105
DMH110	11	6.45	•		1.67	TID*110
DMH115	11.5	6.45	•		1.76	TID*115
DMH120	12	6.8			1.82	TID*120
DMH125	12.5	6.8	•		1.91	TID*125
DMH126	12.6	6.8	•		1.93	TID*125
DMH130	13	7.4	•		1.96	TID*130
DMH133	13.3	7.4	•		2.01	TID*130
DMH135	13.5	7.4	•		2.05	TID*135
DMH137	13.7	7.4	•		2.09	TID*135
DMH138	13.8	7.4	•		2.11	TID*135
DMH139	13.9	7.4	•		2.12	TID*135
DMH140	14	7.95	•		2.12	TID*140
DMH142	14.2	7.95	•		2.16	TID*140
DMH145	14.5	7.95			2.21	TID*145
DMH150	15	8.53	•		2.27	TID*150
DMH152	15.2	8.53	•		2.31	TID*150
DMH155	15.5	8.53	•		2.36	TID*150
DMH160	16	9.1			2.42	TID*160
DMH165	16.5	9.1	•		2.51	TID*160
DMH170	17	9.7	•		2.59	TID*170
DMH175	17.5	9.7	•		2.68	TID*170
DMH180	18	10.3	•		2.73	TID*180
DMH185	18.5	10.3	•		2.82	TID*180
DMH190	19	10.8	•		2.88	TID*190
DMH194	19.4	10.8			2.95	TID*190
DMH195	19.5	10.8			2.97	TID*190
ø10 - ø19.5 =1 ケース	ス2個入り					●:設定アイテム

DMN 非鉄金属用ヘッド

工具径

ø10 - ø17.5

ø18 - ø19.9 ステンレス K 鋳鉄 \star 非鉄金属 耐熱合金 H 高硬度材

★:第一選択 ☆:第二選択

ヘッド径公差

+0.01 / 0 +0.012 / 0

		コーティング				
形番	DC	LPR	KS15F		PL	ボディ
DMN100	10	6.05			1.47	TID*100
DMN102	10.2	6.05			1.51	TID*100
DMN105	10.5	6.05			1.56	TID*105
DMN108	10.8	6.05			1.62	TID*105
DMN110	11	6.45			1.67	TID*110
DMN115	11.5	6.45			1.76	TID*115
DMN120	12	6.8			1.82	TID*120
DMN123	12.3	6.8			1.87	TID*120
DMN125	12.5	6.8			1.91	TID*125
DMN126	12.6	6.8			1.93	TID*125
DMN127	12.7	6.8			1.95	TID*125
DMN130	13	7.4			1.96	TID*130
DMN135	13.5	7.4			2.05	TID*135
DMN138	13.8	7.4			2.11	TID*135
DMN140	14	7.95			2.12	TID*140
DMN142	14.2	7.95			2.16	TID*140
DMN145	14.5	7.95			2.21	TID*145
DMN150	15	8.53			2.27	TID*150
DMN152	15.2	8.53			2.31	TID*150
DMN155	15.5	8.53			2.36	TID*150
DMN158	15.8	8.53			2.42	TID*150
DMN159	15.9	8.53			2.43	TID*150
DMN160	16	9.1			2.42	TID*160
DMN163	16.3	9.1			2.47	TID*160
DMN165	16.5	9.1			2.51	TID*160
DMN170	17	9.7			2.59	TID*170
DMN175	17.5	9.7			2.68	TID*170
DMN180	18	10.3			2.73	TID*180
DMN185	18.5	10.3			2.82	TID*180
DMN190	19	10.8			2.88	TID*190
DMN195	19.5	10.8			2.97	TID*190

ø10 - ø19.5 =1 ケース 2 個入り

●:設定アイテム

DRILLMEISTER

■ DMFヘッド用適用可能範囲/推奨ホルダ対応表

工具長が最小になるように工具をご選択ください

推奨ホルダ L/D	≦ 8										
	平面加工	異形状抜け	交差穴	凹凸 / 鋳肌面							
加工形態											
推奨ホルダ L/D	≦	3	≦ '	1.5							
	傾斜面	湾曲面	重ね穴	プランジ加工							
加工形態											

- ・ワークでの最大傾斜角度は 12°以下での使用を推奨いたします
- ・平面以外での食いつき、断続加工時は送りを下げて設定してください
- ・重ね穴加工時は工具の、オーバーラップ量を $1/3 \times D$ 以下に設定してください
- ・プランジ加工時は工具径の 70% 以上がかかるように設定してください

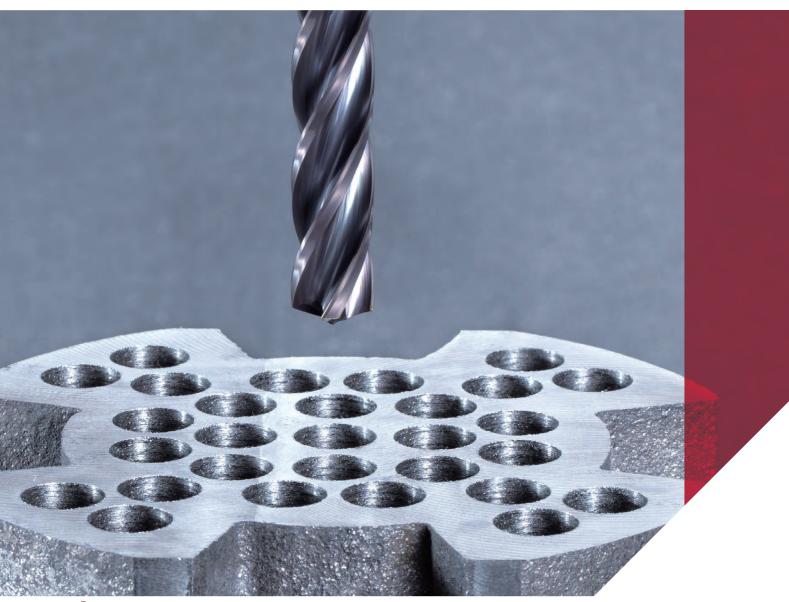
■ 下穴/本加エヘッド対応表

			下穴	
		DMP	DMC	DMF
	DMP	OK	Not good	Not good
本加工	DMC	OK .	OK	OK
	DMF	Not good	Not good	OK

■標準切削条件

		切削速度			送	り:f (mm/re	ev)		
ISO	被 削 材	奶削还反				DC (mm)			
		Vc (m/min)	ø6 - 7.9	ø8 - 9.9	ø10 - ø11.9	ø12 - ø13.9	ø14 - ø15.9	ø16 - ø19.9	ø20 - ø25.9
	低炭素鋼 (C < 0.3) SS400, SM490, S25Cなど	80 - 140	0.09 - 0.13	0.12 - 0.25	0.15 - 0.28	0.18 - 0.3	0.20 - 0.35	0.25 - 0.45	0.25 - 0.45
P	炭素鋼 (C > 0.3) S45C, S55Cなど	70 - 120	0.09 - 0.13	0.12 - 0.25	0.15 - 0.28	0.18 - 0.3	0.2 - 0.35	0.25 - 0.45	0.25 - 0.45
	低合金鋼 SCM415など	70 - 120	0.08 - 0.13	0.11 - 0.25	0.14 - 0.28	0.16 - 0.32	0.18 - 0.35	0.23 - 0.4	0.25 - 0.45
	合金鋼 SCM440, SCr420, etc. 42CrMo4, 20Cr4, etc.	40 - 90	0.08 - 0.13	0.11 - 0.25	0.14 - 0.28	0.16 - 0.32	0.18 - 0.35	0.23 - 0.4	0.25 - 0.45
M	ステンレス鋼 SCM440, SCr420など	30 - 70	0.08 - 0.1	0.1 - 0.15	0.12 - 0.18	0.14 - 0.2	0.16 - 0.24	0.16 - 0.26	0.18 - 0.3
K	普通鋳鉄 FC250など	80 - 180	0.12 - 0.18	0.15 - 0.3	0.20 - 0.35	0.25 - 0.4	0.3 - 0.45	0.35 - 0.55	0.35 - 0.6
	ダクタイル鋳鉄 FCD700など	80 - 140	0.12 - 0.18	0.15 - 0.3	0.20 - 0.35	0.25 - 0.4	0.3 - 0.45	0.35 - 0.55	0.35 - 0.6
N	アルミニウム合金 ADC12など	80 - 220	0.1 - 0.2	0.2 - 0.35	0.25 - 0.4	0.3 - 0.45	0.35 - 0.5	0.4 - 0.6	0.5 - 0.75
S	チタン合金 Ti-6Al-4Vなど	20 - 50	0.05 - 0.07	0.06 - 0.12	0.08 - 0.15	0.1 - 0.28	0.12 - 0.2	0.14 - 0.22	0.18 - 0.27
3	耐熱合金	20 - 50	0.05 - 0.07	0.06 - 0.11	0.08 - 0.13	0.1 - 0.15	0.12 - 0.18	0.12 - 0.22	0.14 - 0.22
H	焼入れ鋼	20 - 50	0.05 - 0.07	0.06 - 0.12	0.08 - 0.15	0.1 - 0.18	0.12 - 0.2	0.14 - 0.22	0.16 - 0.25

⁻ 上記切削条件は一般的な加工条件の目安です - 使用機械の馬力や剛性および被削材によって変更する必要があります


⁻ 機械剛性や切削条件などにより穴径は変動することがあります - L/D = 8 & 12 での加工時は、上記推奨値の低〜中間の条件が推奨されます

穴あけ加工

驚異的な穴あけ加工を実現する 4 枚刃ソリッドドリル

ADD 4 つの切れ刃が超高能率加工と長寿命を実現

- 溝形状、切れ刃形状の最適化により、安定した 4 箇所のマージンにより、高精度な穴あけ加工 切りくず排出性を実現
- セルフセンタリング形状で、抜群の食付き性を 実現

が可能

ドリル

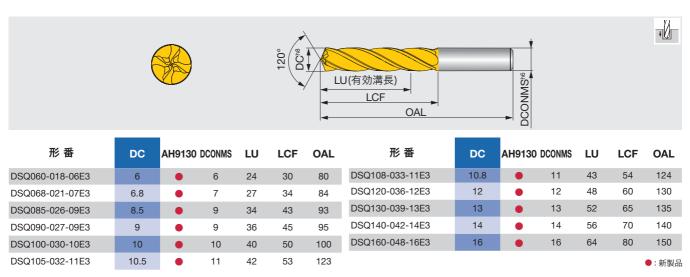
- DSQ...

4 フルートドリル DC = Ø6 - Ø16 mm L/D = 3.5

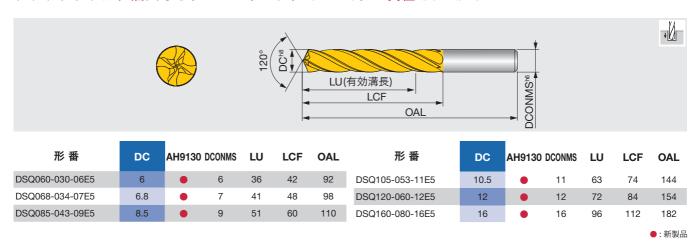
材種

- AH9130: 耐摩耗性に優れた材種

この製品の 詳しい情報は こちらから。



■ ソリッドドリル


DSQ-E3

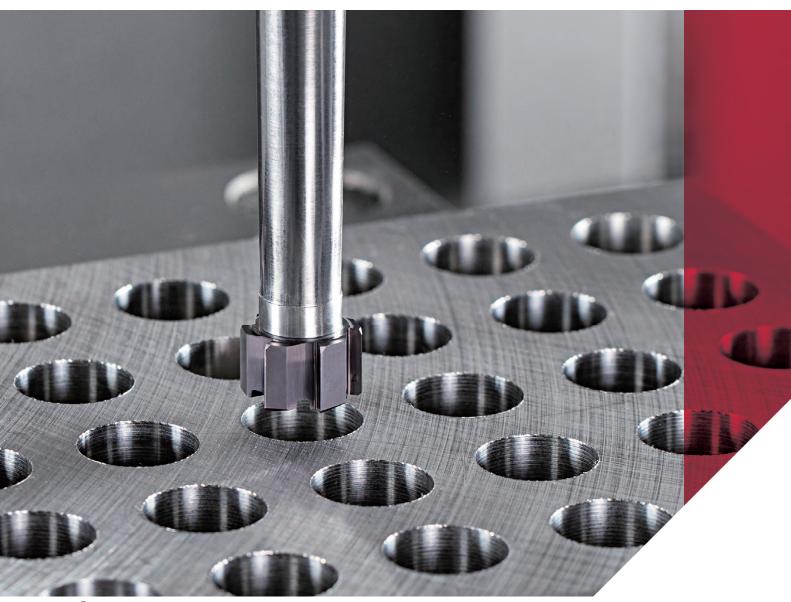
ソリッドドリル、油穴なし、DINシャンク、L/D = 3、工具径 ø6 - ø16 mm

DSQ-E5

ソリッドドリル、油穴なし、DINシャンク、L/D = 5、工具径 ø6 - ø16 mm

■ 標準切削条件

ISO	被削材	ブリネル硬度	切削速度	送 り : ƒ (mm/rev)		
150	11次 月3 173	(HB)	Vc (m/min)	ø6 ~ ø9.9	ø10 ~ ø16	
K	ねずみ鋳鉄 FC300 など	~ 200	60 - 120	0.2 - 0.8	0.3 - 1	
	ダクタイル鋳鉄 FCD450 など	~ 300	60 - 120	0.2 - 0.8	0.3 - 1	


- 上記切削条件は、一般的な加工条件の目安です。使用機械の馬力や剛性、および被削材によって変更する必要があります。切りくずの処理状態や切れ刃の損傷状態を参考にして最適条件を選定してください。
- 各々の工具径の範囲において、小径側では送りを切削条件内の低めに設定してください。
- L/D = 3 を超える深さを加工する際は、切りくずの処理状態や刃先状態に応じてステップ加工ないしはドゥエル加工 を推奨いたします。

REAMEISTER U-L-V-7/29-

リーマ加工

高精度・高能率加工を実現する ヘッド交換式リーマ

ADD ヘッド交換式工具による高精度リーマ加工

- 革新的なヘッドクランプ方法により高い振れ精 度と繰り返し精度を実現
- 穴形状により2種類のヘッド形状が選択可能
- 最適化された切れ刃形状により、安定した長寿 命加工が可能
- 高精度ヘッドにより H7 穴精度の仕上げ加工が あらゆる被削材に対応可能な材種『AH725』に より、高速・高能率加工を実現

Lineup

ヘッド

- HRM...

AS 形: 止まり穴加工用 BL 形: 貫通穴加工用 $DC = \emptyset 11.501 - \emptyset 32 \text{ mm}$

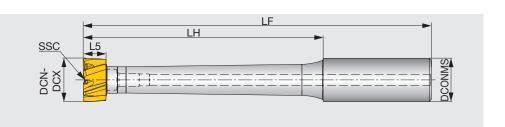
リーマボディ

- TRM 形: テーパシャンク L/D = 1.5, 3, 5, 8

材種

- AH725: あらゆる被削材に対応可能

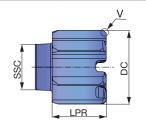
この製品の 詳しい情報は こちらから。

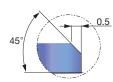


REAMMEISTER

リーマツール

TRM リーマツール


形 番	DCN	DCX	SSC	L/D	DCONMS	L5	LF	LH
TRM-T5-R16-1.5	11.5	13.5	T5	1.5	16	9.3	77.8	29.8
TRM-T6-R16-1.5	13.501	16	T6	1.5	16	9.4	81.5	33.5
TRM-T7-R20-1.5	16.001	20	T7	1.5	20	10.6	90.7	40.7
TRM-T8-R20-1.5	20.001	25.999	Т8	1.5	20	12.8	101	51
TRM-T9-R32-1.5	26	32	Т9	1.5	32	12.8	120.9	60.9
TRM-T5-R16-3	11.5	13.5	T5	3	16	9.3	97.8	49.8
TRM-T6-R16-3	13.501	16	T6	3	16	9.4	105.4	57.4
TRM-T7-R20-3	16.001	20	T7	3	20	10.6	120.6	70.6
TRM-T8-R20-3	20.001	25.999	T8	3	20	12.8	137.8	87.8
TRM-T9-R32-3	26	32	T9	3	32	12.8	167.1	107.1
TRM-T5-R16-5	11.5	13.5	T5	5	16	9.3	125	77
TRM-T6-R16-5	13.501	16	Т6	5	16	9.4	137.4	89.4
TRM-T7-R20-5	16.001	20	T7	5	20	10.6	160.6	110.6
TRM-T8-R20-5	20.001	25.999	T8	5	20	12.8	187.8	137.8
TRM-T9-R32-5	26	32	Т9	5	32	12.8	231.1	171.1
TRM-T5-R16-8	11.5	13.5	T5	8	16	9.3	165.5	117.5
TRM-T6-R16-8	13.501	16	Т6	8	16	9.4	185.4	137.4
TRM-T7-R20-8	16.001	20	T7	8	20	10.6	220.6	170.6
TRM-T8-R20-8	20.001	25.999	Т8	8	20	12.8	262.8	212.8
TRM-T9-R32-8	26	32	Т9	8	32	12.8	327.1	267.1
TRMU-T5-R0.625-1.5	11.5	13.5	T5	1.5	15.875	9.3	77.7	29.7
TRMU-T6-R0.625-1.5	13.501	16	T6	1.5	15.875	9.4	81.5	33.5
TRMU-T7-R0.75-1.5	16.001	20	T7	1.5	19.05	10.6	90.7	40.6
TRMU-T8-R0.75-1.5	20.001	25.999	Т8	1.5	19.05	12.8	101.1	51.1
TRMU-T9-R1.25-1.5	26	32	Т9	1.5	31.75	12.8	120.9	61.0
TRMU-T5-R0.625-3	11.5	13.5	T5	3	15.875	9.3	97.8	49.8
TRMU-T6-R0.625-3	13.501	16	Т6	3	15.875	9.4	105.4	57.4
TRMU-T7-R0.75-3	16.001	20	T7	3	19.05	10.6	120.4	70.6
TRMU-T8-R0.75-3	20.001	25.999	Т8	3	19.05	12.8	137.7	87.6
TRMU-T9-R1.25-3	26	32	Т9	3	31.75	12.8	167.1	106.9
TRMU-T5-R0.625-5	11.5	13.5	T5	5	15.875	9.3	125.0	77.0
TRMU-T6-R0.625-5	13.501	16	Т6	5	15.875	9.4	137.4	89.4
TRMU-T7-R0.75-5	16.001	20	T7	5	19.05	10.6	160.5	110.5
TRMU-T8-R0.75-5	20.001	25.999	T8	5	19.05	12.8	187.7	137.7
TRMU-T9-R1.25-5	26	32	Т9	5	31.75	12.8	231.1	171.2
TRMU-T5-R0.625-8	11.5	13.5	T5	8	15.875	9.3	165.4	117.3
TRMU-T6-R0.625-8	13.501	16	T6	8	15.875	9.4	185.4	137.4
TRMU-T7-R0.75-8	16.001	20	T7	8	19.05	10.6	220.5	170.7
TRMU-T8-R0.75-8	20.001	25.999	Т8	8	19.05	12.8	262.9	212.9
TRMU-T9-R1.25-8	26	32	Т9	8	31.75	12.8	327.2	267.0

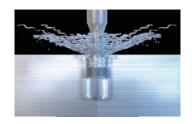

キーとねじは同封されています有効深さは取り付けるヘッド径に依存します。例) ø12 X 3D = 36, ø13 X 3D = 39

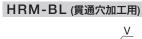
リーマヘッド

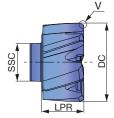
HRM-AS (止まり穴加工用)

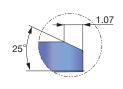
0.5
45°

形番	DC	AH725	SSC	LPR	CICT
HRM-11.501-AS-T5	11.501	•	T5	9.3	6
HRM-12.000-AS-T5	12	•	T5	9.3	6
HRM-12.700-AS-T5	12.7	•	T5	9.3	6
HRM-13.000-AS-T5	13	•	T5	9.3	6
HRM-13.500-AS-T5	13.5	•	T5	9.3	6
HRM-14.000-AS-T6	14	•	T6	9.4	6
HRM-15.000-AS-T6	15	•	T6	9.4	6
HRM-15.875-AS-T6	15.875	•	T6	9.4	6
HRM-16.000-AS-T6	16	•	T6	9.4	6
HRM-16.001-AS-T7	16.001	•	T7	10.6	6
HRM-17.000-AS-T7	17	•	T7	10.6	6
HRM-18.000-AS-T7	18	•	T7	10.6	6
HRM-19.000-AS-T7	19	•	T7	10.6	6
HRM-19.050-AS-T7	19.05	•	T7	10.6	6
HRM-20.000-AS-T7	20	•	T7	10.6	6
HRM-20.001-AS-T8	20.001	•	T8	12.8	8
HRM-21.000-AS-T8	21	•	T8	12.8	8
HRM-22.000-AS-T8	22	•	T8	12.8	8
HRM-23.000-AS-T8	23	•	T8	12.8	8
HRM-24.000-AS-T8	24	•	T8	12.8	8
HRM-25.000-AS-T8	25	•	T8	12.8	8
HRM-25.400-AS-T8	25.4	•	T8	12.8	8
HRM-26.000-AS-T9	26	•	Т9	12.8	8
HRM-27.000-AS-T9	27	•	Т9	12.8	8
HRM-28.000-AS-T9	28	•	Т9	12.8	8
HRM-29.000-AS-T9	29	•	Т9	12.8	8
HRM-30.000-AS-T9	30	•	Т9	12.8	8
HRM-31.000-AS-T9	31	•	Т9	12.8	8
HRM-31.750-AS-T9	31.75	•	Т9	12.8	8
HRM-32.000-AS-T9	32	•	Т9	12.8	8


ヘッド径	ヘッド径公差	穴径精度 (H7)
ø11.500 - ø18.000	+0.015 / +0.011	+0.018 / 0
ø18.001 - ø30.000	+0.017 / +0.013	+0.021 / 0
ø30.001 - ø32.000	+0.021 / +0.016	+0.025 / 0


- ・標準ヘッドは H7 公差加工用です・ヘッド径公差は、H7 公差レンジの上側に設定しています。





形番	DC	AH725	SSC	LPR	CICT
HRM-11.501-BL-T5	11.501	•	T5	9.3	6
HRM-12.000-BL-T5	12	•	T5	9.3	6
HRM-12.700-BL-T5	12.7	•	T5	9.3	6
HRM-13.000-BL-T5	13	•	T5	9.3	6
HRM-13.500-BL-T5	13.5	•	T5	9.3	6
HRM-13.501-BL-T6	13.501	•	T6	9.4	6
HRM-14.000-BL-T6	14	•	T6	9.4	6
HRM-15.000-BL-T6	15	•	T6	9.4	6
HRM-15.875-BL-T6	15.875	•	T6	9.4	6
HRM-16.000-BL-T6	16	•	T6	9.4	6
HRM-16.001-BL-T7	16.001	•	T7	10.6	6
HRM-17.000-BL-T7	17	•	T7	10.6	6
HRM-18.000-BL-T7	18	•	T7	10.6	6
HRM-19.000-BL-T7	19	•	T7	10.6	6
HRM-19.050-BL-T7	19.05	•	T7	10.6	6
HRM-20.000-BL-T7	20	•	T7	10.6	6
HRM-20.001-BL-T8	20.001	•	Т8	12.8	8
HRM-21.000-BL-T8	21	•	T8	12.8	8
HRM-22.000-BL-T8	22	•	Т8	12.8	8
HRM-23.000-BL-T8	23	•	T8	12.8	8
HRM-24.000-BL-T8	24	•	Т8	12.8	8
HRM-25.000-BL-T8	25	•	Т8	12.8	8
HRM-25.400-BL-T8	25.4	•	Т8	12.8	8
HRM-26.000-BL-T9	26	•	Т9	12.8	8
HRM-27.000-BL-T9	27	•	Т9	12.8	8
HRM-28.000-BL-T9	28	•	Т9	12.8	8
HRM-29.000-BL-T9	29	•	Т9	12.8	8
HRM-30.000-BL-T9	30	•	Т9	12.8	8
HRM-31.000-BL-T9	31	•	Т9	12.8	8
HRM-32.000-BL-T9	32	•	Т9	12.8	8

ヘッド径	ヘッド径公差	穴径精度 (H7)
ø11.500 - ø18.000	+0.015 / +0.011	+0.018 / 0
ø18.001 - ø30.000	+0.017 / +0.013	+0.021 / 0
ø30.001 - ø32.000	+0.021 / +0.016	+0.025 / 0

- ・標準ヘッドは H7 公差加工用です ・ヘッド径公差は、H7 公差レンジの上側に設定しています。

●:設定アイテム 1ケース1個入り

●:設定アイテム 1ケース1個入り

Tungaloy 173

REAMMEISTER

■標準切削条件 刃当たり送り換算表

		上口 少り 十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	刃当たり送り : fz (mm/t)				
ISO	被削材 切削速度 Vc (m/min)	切削速度 Vc (m/min)	AS: 直溝(止まり穴用)		BL: 左ねじれ	ん(貫通穴用)	
		ø11.5 - ø16	ø16 - ø32	ø11.5 - ø16	ø16 - ø32		
	低炭素鋼 (C < 0.3) SS400, SM490, S25C など	80 - 200	0.05 - 0.18	0.05 - 0.20	0.05 - 0.2	0.05 - 0.27	
P	炭素鋼 (C > 0.3) S45C, S55C など	80 - 150	0.05 - 0.15	0.05 - 0.18	0.05 - 0.18	0.05 - 0.25	
	低合金鋼 SCM415 など	80 - 200	0.05 - 0.18	0.05 - 0.20	0.05 - 0.2	0.05 - 0.27	
	合金鋼 SCM440,SCr420 など	50 - 150	0.03 - 0.10	0.05 - 0.13	0.05 - 0.13	0.05 - 0.17	
	ステンレス鋼(オーステナイト系) SUS304, SUS316 など	20 - 40	0.03 - 0.10	0.03 - 0.13	0.05 - 0.13	0.05 - 0.17	
M	ステンレス鋼(マルテンサイト系 , フェライト系) SUS430, SUS416 など	20 - 40	0.03 - 0.10	0.03 - 0.13	0.05 - 0.13	0.05 - 0.17	
	ステンレス鋼(析出硬化系) SUS630 など	20 - 40	0.03 - 0.10	0.03 - 0.13	0.05 - 0.13	0.05 - 0.17	
K	普通鋳鉄 FC250 など	100 - 250	0.05 - 0.18	0.05 - 0.20	0.05 - 0.2	0.05 - 0.27	
	ダクタイル鋳鉄 FCD700 など	80 - 200	0.05 - 0.15	0.05 - 0.18	0.05 - 0.18	0.05 - 0.25	
N	アルミニウム合金	100 - 300	0.05 - 0.18	0.05 - 0.20	0.05 - 0.2	0.05 - 0.27	
	耐熱鋼 インコネル 718 など	15 - 50	0.03 - 0.06	0.03 - 0.08	0.05 - 0.1	0.05 - 0.13	
S	チタン合金 Ti-6Al-4V など	30 - 60	0.03 - 0.10	0.03 - 0.13	0.05 - 0.13	0.05 - 0.17	
	高硬度鋼 40HRC 以上	50 - 100	0.03-0.08	0.03 - 0.1	0.05-0.12	0.05 - 0.15	

回転当たり送り換算表

	被 削 材 切削速度 Vc (m/min)		送り : f (mm/rev)					
ISO			AS: 直溝(止まり穴用)			BL: 左ねじれ(貫通穴用)		
130		Vc (m/min)	ø11.5 - ø16 6 枚刃	ø16.001 - ø20 6 枚刃	ø20.001 - ø32 8 枚刃	ø11.5 - ø16 6 枚刃	ø16.001 - ø20 6 枚刃	ø20.001 - ø32 8 枚刃
	低炭素鋼 (C < 0.3) SS400, SM490, S25C など	80 - 200	0.3 - 1.08	0.3 - 1.2	0.4 - 1.6	0.3 - 1.2	0.3 - 1.62	0.4 - 2.16
P	炭素鋼 (C > 0.3) S45C, S55C など	80 - 150	0.3 - 0.9	0.3 - 1.08	0.4 - 1.44	0.3 - 1.08	0.3 - 1.5	0.4 - 2
	低合金鋼 SCM415 など	80 - 200	0.3 - 1.08	0.3 - 1.2	0.4 - 1.6	0.3 - 1.2	0.3 - 1.2	0.4 - 2.16
	合金鋼 SCM440,SCr420 など	50 - 150	0.18 - 0.6	0.3 - 0.78	0.4 - 1.04	0.3 - 0.78	0.3 - 1.02	0.4 - 1.36
	ステンレス鋼(オーステナイト系) SUS304, SUS316 など	20 - 40	0.18 - 0.6	0.18 - 0.78	0.24 - 1.04	0.3 - 0.78	0.3 - 1.02	0.4 - 1.36
M	ステンレス鋼(マルテンサイト系 , フェライト系) SUS430 , SUS416 など	20 - 40	0.18 - 0.6	0.18 - 0.78	0.24 - 1.04	0.3 - 0.78	0.3 - 1.02	0.4 - 1.36
	ステンレス鋼(析出硬化系) SUS630 など	20 - 40	0.18 - 0.6	0.18 - 0.78	0.24 - 1.04	0.3 - 0.78	0.3 - 1.02	0.4 - 1.36
	普通鋳鉄 FC250 など	100 - 250	0.3 - 1.08	0.3 - 1.2	0.4 - 1.6	0.3 - 1.2	0.3 - 1.62	0.4 - 2.16
K	ダクタイル鋳鉄 FCD700 など	80 - 200	0.3 - 0.9	0.3 - 1.08	0.4 - 1.44	0.3 - 1.8	0.3 - 1.62	0.4 - 2
N	アルミニウム合金	100 - 300	0.3 - 1.08	0.3 - 1.2	0.4 - 1.6	0.3 - 1.2	0.3 - 1.62	0.4 - 2.16
S	耐熱鋼 インコネル 718 など	15 - 50	0.18 - 0.36	0.18 - 0.48	0.24 - 0.64	0.3 - 0.6	0.3 - 0.78	0.4 - 1.04
	チタン合金 Ti-6Al-4V など	30 - 60	0.18 - 0.6	0.18 - 0.78	0.24- 1.04	0.3 - 0.78	0.3 - 1.02	0.4 - 1.36
	高硬度鋼 40HRC 以上	50 - 100	0.18 - 0.48	0.18 - 0.6	0.24 - 0.8	0.3 - 0.72	0.3 - 0.9	0.4 - 1.2

マーケティングネットワーク

株式会社タンガロイ

本社

〒 970-1144 福島県いわき市好間工業団地 11-1

☎ 0246(36)8501 Fax. 0246(36)8542

国内販売拠点

営業本部

〒 970-1144

福島県いわき市好間工業団地 11-1

☎ 0246(36)8520 FAX 0246(36)8538

東部支店

東京営業所

〒 222-0033

神奈川県横浜市港北区新横浜 1-7-9

友泉新横浜一丁目ビル

☎ 045(470)8195

FAX 045(470)8562

新潟営業所

〒 950-0950

新潟県新潟市中央区鳥屋野南三丁目 10番 26号 ウェルズ 21 とやのみなみ B-3 号室

☎ 025(281)1121

FAX 025(281)1123

富士営業所

T 416-0952

静岡県富士市青葉町 542 瀬尾ビル 2階

☎ 0545(60)6311

FAX 0545(60)6313

高崎営業所

〒 370-0849

群馬県高崎市八島町17イシイビル6階

☎ 027(327)5597

FAX 027(323)8719

東北営業所

〒 983-0045

宮城県仙台市宮城野区宮城野 1-12-15

松栄宮城野ビル

☎ 022(297)1911

FAX 022(293)0272

いわき営業所

〒 970-1144

福島県いわき市好間工業団地 11-1

☎ 0246(36)8155

FAX 0246(36)8156

長野営業所

〒 386-0014

長野県上田市材木町 2-9-4

産業振興ビル3階A

☎ 0268(26)3870

FAX 0268(26)3872

中部支店

名古屋営業所

〒 470-0124

愛知県日進市浅田町茶園 77-1

☎ 052(805)6012

FAX 052(805)6025

三河営業所

〒 446-0056

愛知県安城市三河安城町 1-9-2

第2東祥ビル2階

☎ 0566(73)9110

FAX 0566(73)9355

金沢営業所

〒 920-0856

石川県金沢市昭和町 16-1 (ヴィサージュ)

a 076(222)2727

FAX 076(222)2730

浜松営業所

T 435-0013

静岡県浜松市東区天竜川町 1036

グリーンビル

☎ 053(422)6266

FAX 053(422)6264

トヨタ営業所

〒 470-0124

愛知県日進市浅田町茶園 77-1

☎ 052(805)6011

FAX 052(805)6083

西部支店

大阪営業所

〒 559-0034

大阪市住之江区南港北 2-1-10

ATC ビル O's 棟北館 6階

☎ 06(7668)4501

FAX 06(7668)4519

京都営業所

 $\pm 600-8357$

京都府京都市下京区柿本町 579

五条堀川ビル

☎ 075(371)6110 FAX 075(371)6777

神戸営業所

〒 673-0892

兵庫県明石市本町 2-1-26

ニッセイ明石ビル

☎ 078(911)9901

FAX 078(911)9898

岡山営業所

〒 700-0971

岡山県岡山市北区野田 3-13-39

野田センタービル

☎ 086(245)2915

FAX 086(245)2912

広島営業所

〒 730-0051

広島県広島市中区大手町 2-11-2

グランドビル大手町

☎ 082(541)0541

FAX 082(541)0540

福岡営業所

〒 839-0801

福岡県久留米市宮ノ陣 3-7-57

☎ 0942(37)1326

FAX 0942(37)1346

11-1 Yoshima Kogyodanchi Iwaki 970-1144 Japan www.tungaloy.com

Distributed by:

