

General product information

View

Added products

Close-pitch

Expansion of close-pitch cutters and PCD inserts for complete application coverage

View

w w w.tungaloy.com/us Tungaloy Report No. 524-US

High Speed Face Milling Cutter

for finishing aluminum

ACCELERATED MACHINING

Super high density PCD cutter

with innovative insert clamp design for quick and easy insert setting

Super high density cutter for efficient aluminum finishing

Significantly higher number of PCD cutting edges

Ensures machining efficiency

22 inserts per ø4" cutter diameter. Allows for higher cutting feeds over the competition.

Unique axial adjusting mechanism - CamAdjust

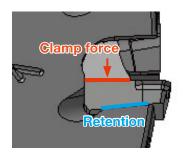
A single key wrench is all it takes for mounting the inserts and fineadjusting for precision, reducing time spent on presetting work. Setting range: 0.039" (1mm)

Internal coolant in each pocket

Coolant is directed to the cutting edge, facilitating smooth chip evacuation

Steel body

the cutter body is made of durable steel


Exceptionally high balancing quality for high speed milling

Balance level = G6.3 (ISO1940/1)

Safety measures for high speed milling

The insert is safely locked against centrifugal forces

Inserts are securely retained in place, preventing them from being dislocated by centrifugal force during high speed milling

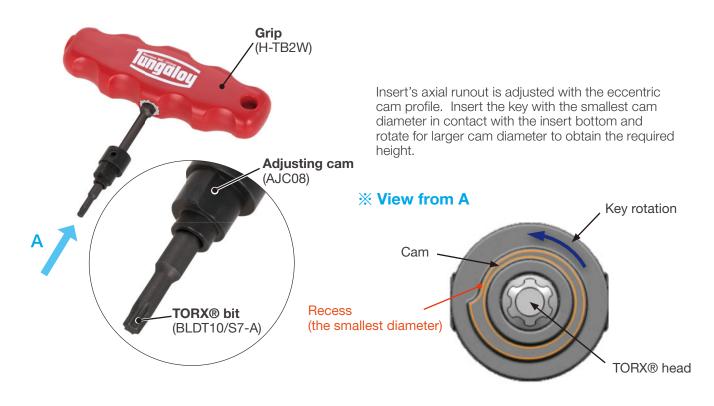
Wedge shape design prevents the insert from breaking off the seat induced by centrifugal inertia force.

Note: Do not exceed the maximum rotation (n max) inscribed on the cutter body.

Cutter diameter (Inch)	Max num. of teeth	Max. rotation number (rpm)	Cutter weight (lb)
2	8	20,000	1.92
2.5	10	19,000	1.34
3	16	17,000	2.56
4	22	15,000	4.30
5	26	14,000	8.03
6	34	12,000	10.76

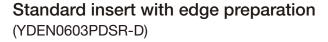
CamAdjust system - innovative insert axial adjusting mechanism

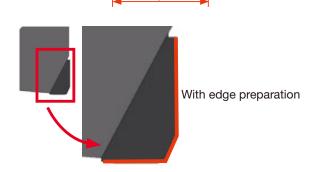
- The same key is used for mounting and adjusting the inserts
- The key wrench is operated in a single direction making insert adjustment easy on the pre-setter
- Significantly reduced insert setting time


TORX bit for clamping insert

Eccentric cam for adjusting axial runout

Special key wrench with adjusting cam

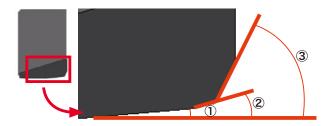



Insert variations

Standard insert with built-in deburrer (YDEN0603PDFR-D, YDEN0603PDSR-D)

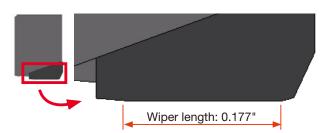
- Double-angled cutting edge for effective chip splitting
- Burr formation is significantly minimized by the cutting edge chip thinning effect at the exit
- Built-in wiper geometry for better surface finishing

Strengthened edges for cutting gates or greater depths of cut



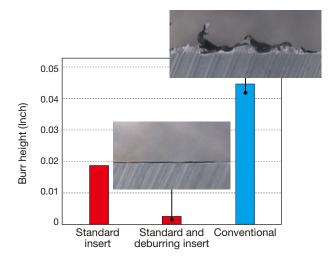
Wiper

Deburring insert - Tungaloy's exclusive insert design (YDEN0603PDFR-BD)


(YDEN0603PDFR-BD)

Use with standard inserts for enhanced burr-free machining

Wiper insert - for superior surface finishing (YDEN0603PDFR-WD)


Use with standard inserts to improve the surface finishing quality. Number of wiper inserts on the cutter may depend on the feed rate

CUTTING PERFORMANCE

Reduced burr formation

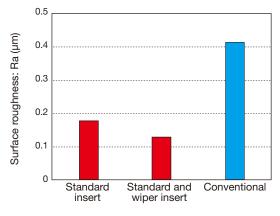
2 types of deburring inserts for burr-free milling

Cutter : TPYD06U3.00B1.00R16 (Ø = 3", z = 16)
Insert : YDEN0603PDFR-D DX110 (Standard insert)

: YDEN0603PDFR-BD DX110 (Deburring insert)

Workpiece : 1100

Cutting speed : Vc = 8245 sfm Number of revolutions : n = 10,000 rpm Feed per tooth : fz = 0.004 ipt


Feed speed : Vf = 640 ipm (Standard insert)

: Vf = 320 ipm (Standard and deburring insert)

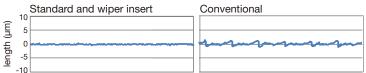
Machining : Face milling (on center)
Machine : Vertical M/C, CAT40

Better surface roughness

Wiper inserts improve surface roughness

 $\label{eq:cutter} \begin{array}{ll} \text{Cutter} & : \text{TPYD06U3.00B1.00R16 ($\emptyset = 3$", $z = 16$)} \\ \text{Insert} & : \text{YDEN0603PDFR-D DX110 (Standard insert)} \end{array}$

: YDEN0603PDFR-WD DX110 (Wiper insert)

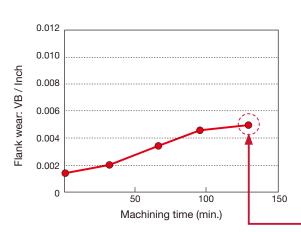

Workpiece : 1100

Cutting speed : Vc = 8245 sfmNumber of revolutions: n = 10,000 rpmFeed per tooth : fz = 0.004 iptFeed speed : Vf = 640 ipmInsert runout : < 1 µm (<0.00004")Depth of cut : ap = 0.020"

Depth of width : ae = 1.181"

Coolant : Wet

Machining : Face milling (on center)
Machine : Vertical M/C, CAT40



CUTTING PERFORMANCE

Strong cutting edge

Optimized edge preparation ensures machining security during heavy interrupted cutting

Cutter : TPYD06U4.00B1.25R22 ($\emptyset = 4$ ", z = 1)

Insert : YDEN0603PDSR-D DX110 (with edge preparation)

Depth of cut : ap = 0.008"
Depth of width : ae = 3"
Coolant : Wet

Machining : Face milling (down cut)
Machine : Vertical M/C, CAT40

After 130 min.

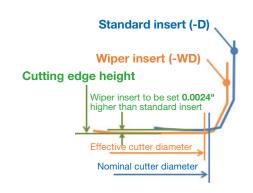
Mounting of deburring inserts

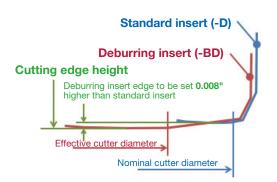
To make the best of the cutter's deburring ability, make sure to place a deburring insert immediately behind every standard insert on the cutter. Note that, since a deburring insert has no cutting edge on the periphery, the effective cutting edges of the cutter will be divided by 2.

Example:

For $\emptyset 4$ " cutter with Z = 22, number of effective cutting edges would be Z = 11. (standard inserts x 11 and deburring inserts x 11)

The order of insert installation is as follows: Standard → Deburring → Standard → Deburring...


Location of deburring inserts on the cutter

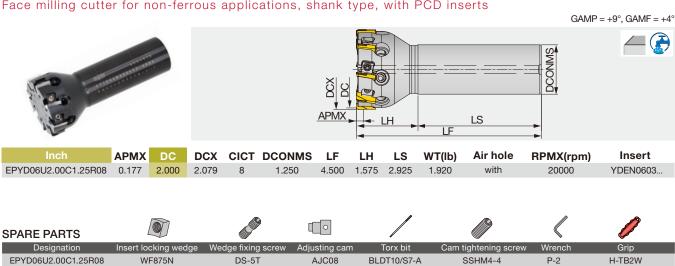


Proper cutting edge setting

- For the best surface finishing results, wiper insert's (-WD) cutting edge should be set 0.0024" higher than that of the standard insert's (-D). For deburring inserts (-BD), set 0.008" higher than that of the standard insert (-D).
- Effective cutter diameter will vary in accordance with wiper insert (-WD) or deburring insert (-BD) dimensions. Refer to the table below for an effective cutter diameter in each specific case.

Cutter		Effective cutter diameter (Inch)
diameter (Inch)	Standard (-D) only	Standard (-D) and wipers (-WD)	Standard (-D) and deburrers (-BD)
2	2	1.976	1.740
2.5	2.5	2.476	2.240
3	3	2.976	2.740
4	4	3.976	3.740
5	5	4.976	4.740
6	6	5.976	5.740

TPYD06

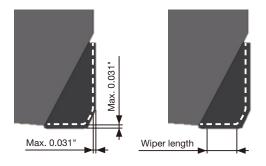

Face milling cutter for non-ferrous applications, bore type, with PCD inserts

Inch	АРМХ	DC	DCX	CICT	DCSFMS	LF	DCON	CBDP	KWW	b	WT(lb)	Air hole	RPMX(rpm)	Insert
TPYD06U2.50B0.75R10	0.177	2.500	2.579	10	1.772	1.575	0.750	0.750	0.315	0.197	1.340	with	19000	YDEN0603
TPYD06U3.00B1.00R16	0.177	3.000	3.079	16	2.362	1.969	1.000	1.024	0.374	0.236	2.560	with	17000	YDEN0603
TPYD06U4.00B1.25R22	0.177	4.000	4.079	22	2.756	1.969	1.250	0.827	0.500	0.315	4.300	with	15000	YDEN0603
TPYD06U5.00B1.50R26	0.177	5.000	5.079	26	3.543	2.362	1.500	1.299	0.626	0.394	8.030	with	14000	YDEN0603
TPYD06U6.00B1.50R34	0.177	6.000	6.079	34	3.543	2.362	1.500	1.299	0.626	0.394	10.760	with	12000	YDEN0603

SPARE PARTS							
Designation	Insert locking wedge	Wedge fixing screw	Adjusting cam	Torx bit	Cam tightening screw	Wrench	Grip
TPYD06U2.50B0.75R10	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W
TPYD06U3.00B1.00R16	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W
TPYD06U4.00B1.25R22	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W
TPYD06U5.00B1.50R26	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W
TPYD06U6.00B1.50R34	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W

EPYD06

INSERT

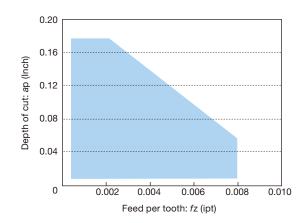

YDEN0603PD(F/S)R-D YDEN0603PDFR-WD INSL INSL R15.75' ₹ YDEN0603PDFR-BD INSL R15.75 P Steel M Stainless Cast iron Non-ferrous * Superalloys ★: First choice H Hard materials PCD Edge DX110 Designation APMX W1 INSL S BS LE prep. YDEN0603PDFR-D 0.177 Without • 0.375 0.500 0.122 0.087 0.256 YDEN0603PDSR-D 0.375 0.500 0.122 0.087 0.256 0.177 With 0.364 0.504 0.122 0.177 YDEN0603PDFR-WD Without YDEN0603PDFR-BD 0.364 0.508 0.122 0.157 Without

Note: Tungaloy provides refurbishing service of PCD inserts upon request.

Package quantity = 1 pc. per box

Managing re-ground inserts

- To maintain its minimum insert capability, re-grinding over 0.031" off the original cutting edge profile is not provided.
- Regrinding will change the dimension of the wiper edge and may affect the surface finishing quality.
- Used PCD inserts are reground as a batch from the same cutter in order to maintain the dimensional uniformity of all inserts in the same batch.
- When inserts from a different batch are accidently mixed, the cutter balance may collapse and the tool or machine may fracture.
- Re-check the cutter diameter as needed, after re-grinding inserts are mounted to offset the tool.



STANDARD CUTTING CONDITIONS

ISO	Workpiece materials	Grades	Designation	Cutting speed Vc (sfm)	Feed per tooth fz (ipt)
	Cast aluminum alloy / Die-cast (Si < 13%)	DX110	YDEN0603PDFR-D	1640 - 13123	0.002 - 0.008
N	Cast aluminum alloy / Die-cast (Si > 13%)	DX110	YDEN0603PDFR-D	656 - 2625	0.002 - 0.008
	Aluminum alloy	DX110	YDEN0603PDFR-D	1640 - 13123	0.002 - 0.008
	Copper alloy	DX110	YDEN0603PDFR-D	656 - 1640	0.002 - 0.008

⁻ The values in the above list are of standard recommendations and may require adjustments in consideration with cutting depths and/or workpiece/machine rigidity.

APPLICATION RANGE

Cutter : TPYD06U3.00B1.00R16 (Ø = 3", z = 16)

Insert : YDEN0603PDFR-D DX110

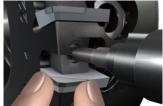
Workpiece material : 383 (Die-cast) Cutting speed : Vc = 7854 sfm

Coolant : Wet

Machine : Vertical M/C, CAT40, 18.5 kW

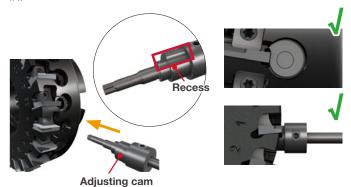
⁻ Use wiper inserts (-WD) for better surface requirements and deburring inserts (-BD) to remove burrs.

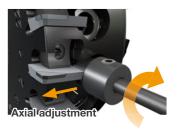
⁻ Always use wet cutting (emulsion coolant) for machining aluminum or copper alloys.


INSERT SETTING PROCEDURE

Mounting the inserts

Place the insert in the pocket and LIGHTLY tighten the screw at 0.74 ft·lb (1 N·m).


Do not fully tighten the screw at this point. Note: Press the insert firmly to the pocket while clamping to eliminate the gap.


2 House to utilize the key

The recessed part of the cam should be placed on the insert bottom. Make sure to place the cam all the way in.

3Adjusting the axial height

Place the adjusting cam in the hole located at the bottom of the pocket. Make sure that the cam is in contact with the insert bottom. Adjust the insert axial height by rotating the cam in the CW direction to gradually increase the axial measure. Stop when it reaches 30-40 µm (0.0012" - 0.0016") just below the desired position. Then, slightly rotate the cam in the CCW direction before removing the cam from the cutter body.

4 Tighten the insert clamping screws

Firmly tighten the insert clamping screws at 2.58 ft·lb (3.5 N·m) . In order to prevent the body deformation by tightening, it is recommended that the final tightening is done by alternating. (e.g. For ø4",z22cutter, 1,3,5,7...21, then 2,4,6,8,...22). For the best balanced insert installation, repeat this tightening procedure for every other insert until all inserts are securely fixed.

Final adjustments

For the final axial adjustment, instead of setting the insert height close to the target position, set so that it reaches approximately 8 μ m (0.0003") above the target. Slightly rotate the cam CCW to remove the key off the body. The insert will go down by 8 μ m (0.0003") to the target height when the cam is removed.

The inserts are recommended to set to < 5 µm (0.0002") axially in relation to one another.

PRACTICAL EXAMPLES

	Workpiece type	Hoist body part	Crank casing
	Cutter	TPYD06U3.00B1.00R16 (ø3", z = 16)	TPYD06U4.00B1.25R2 (ø4", z = 22)
	Insert	YDEN0603PDFR-D	YDEN0603PDFR-D
	Grade	DX110	DX110
	Workpiece material	High pressure aluminum die cast (383)	High pressure aluminum die cast (383)
JS	Cutting speed: Vc (sfm)	6598	10300
Cutting conditions	Feed per tooth: fz (ipt)	0.004	0.035
듩	Feed speed: Vf (ipm)	504	770
Ö	Depth of cut: ap (Inch)	0.04 - 0.16	0.06 - 0.18
9	Width of cut: ae (Inch)	0.197 - 0.787	0.394 - 2.756
Ę	Machining	Face milling	Face milling
Ħ	Coolant	Wet (External)	Wet (Internal)
0	Machine	Vertical M/C, CAT50	Vertical M/C, CAT40
	Results	Productivity 12 16 times! MRR was improved by 16x, with increased table feed and reduced number of passes. Deburing inserts eliminated burr formation.	Productivity 2.5 times! MRR was improved by 2.5x thanks to super high density cutter design.
	Workpiece type	Cam housing Special TPYD06 body (ø61 mm, z = 10)	Cylinder head Special TPYD06 body (ø75 mm, z = 15)
	Cutter		
	Insert	YDEN0603PDSR-D	YDEN0603PDSR-D
	Grade	DX110	DX110
	Workpiece material	High pressure aluminum die cast (383)	Cast aluminum alloy (380)
3	Cutting speed: Vc (sfm)	6286	3248
tions	Feed per tooth: fz (ipt)	0.004	0.0016
Cutting condit	Feed speed: Vf (ipm)	449	112
ŏ	Depth of cut: ap (Inch)	0.020	0.020
6	Width of cut: ae (Inch)	0.197	2.756
럁	Machining	Face milling	Face milling
Ħ	Coolant	Wet (Internal)	Wet (Internal)
	Machine	Vertical M/C, CAT30	Specialized machine
	Results	9,000 Tool life 3 times! Thanks to high tooth density, more teeth are engaged in cut, reducing the load per insert,	Tool life 27 times! Wear resistant DX110 PCD grade dramatically improved the tool life by 27x.

Tungaloy America, Inc.

3726 N Ventura Drive, Arlington Heights, IL 60004, U.S.A.

Inside Sales: +1-888-554-8394

Technical Support: +1-888-554-8391

Fax: +1-888-554-8392 www.tungaloy.com/us

Tungaloy Canada

432 Elgin St. Unit 3, Brantford, Ontario N3S 7P7, Canada

Phone: +1-519-758-5779 Fax: +1-519-758-5791

www.tungaloy.com/ca

www.tungaloy.com/mx

Tungaloy de Mexico S.A.

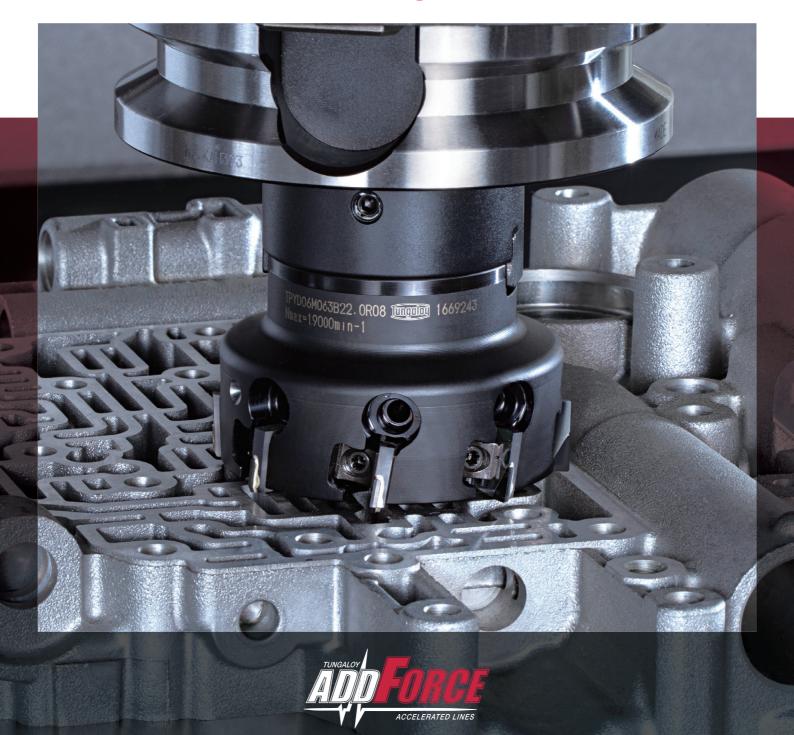
C Los Arellano 113, Parque Industrial Siglo XXI Aguascalientes, AGS, Mexico 20290 Phone:+52-449-929-5410 Fax:+52-449-929-5411

Scan for instant web access

www.tungaloy.com/us

follow us at: facebook.com/tungaloyamerica twitter.com/tungaloy To see this product in action visit:

www.youtube.com/tungaloycorporation



Tungaloy Report No. 524S1-US

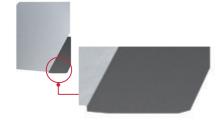
Expansion of close-pitch cutters and PCD inserts for complete application coverage

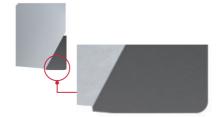
For more information

New close pitch design is added to extra close pitch cutter line

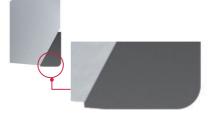
■ Ideal for face milling wide cutting widths

Fewer number of cutting edges are in the cut, reducing chatter for improved surface finish.

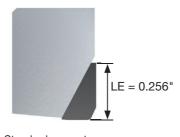

DC (in) New		Number of inserts on the cutter							
DC (III)	Close pitch	Extra close pitch							
2.000	6	8							
2.500	8	10							
3.000	10	16							
4.000	12	22							
5.000	14	26							
6.000	20	34							

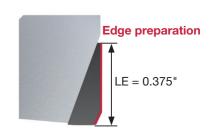

New insert geometries

■ Nose radius (with R0.4 or R0.8)


Ideal for applications where corner radius on the workpiece is specified. Rounded nose corner can also protect the edge from fracture during challenging interrupted cutting.

Double-angle design (YDEN0603PDFR-D)

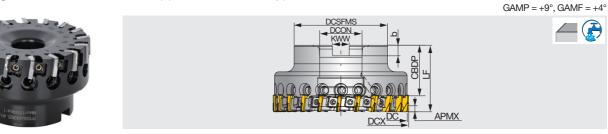

R0.4 (YDEN060304PDFR-D)


R0.8 (YDEN060308PDFR-D)

Long edged insert

Featuring 0.375" in length, the cutting edge can effectively remove gates and risers left on the workpiece without damaging the carbide insert base. The peripheral cutting edge is prepared with chamfer to protect the edge from fracture and also to eliminate burr generation.

Standard geometry (YDEN0603PDFR-D)



Long edge version (YDEN0603PDCR-LD)

TPYD06J160B38.1R34

160 162

Face milling cutter for non-ferrous applications, bore type, with PCD inserts

	Inch	АРМХ	DC	DCX	CICT	DCSFMS	LF	DCON	CBDP	KWW	b	WT(lb)	Air hole	RPMX(min ⁻¹)	Insert
	TPYD06U2.50B0.75R10	0.177	2.500	2.579	10	1.772	1.575	0.750	0.750	0.315	0.197	1.340	With	19,000	YDEN0603
	TPYD06U3.00B1.00R16	0.177	3.000	3.079	16	2.362	1.969	1.000	1.024	0.374	0.236	2.560	With	17,000	YDEN0603
	TPYD06U4.00B1.25R22	0.177	4.000	4.079	22	2.756	1.969	1.250	0.827	0.500	0.315	4.300	With	15,000	YDEN0603
	TPYD06U5.00B1.50R26	0.177	5.000	5.079	26	3.543	2.362	1.500	1.299	0.626	0.394	8.030	With	14,000	YDEN0603
	TPYD06U6.00B1.50R34	0.177	6.000	6.079	34	3.543	2.362	1.500	1.299	0.626	0.394	10.760	With	12,000	YDEN0603
	Metric	APMX	DC	DCX	CICT	DCSFMS	LF	DCON	CBDP	KWW	b W	T(kg) A	ir hole F	RPMX(min ⁻¹)	Insert
New	TPYD06M063B22.0R08	4.5	63	65	8	45	40	22	20	10.4	6.3	0.59	With	19,000	YDEN0603
	TPYD06M063B22.0R10	4.5	63	65	10	45	40	22	20	10.4	6.3	0.57	With	19,000	YDEN0603
New	TPYD06M080B27.0R10	4.5	80	82	10	60	50	27	22	12.4	7	1.3	With	17,000	YDEN0603
	TPYD06M080B27.0R16	4.5	80	82	16	60	50	27	22	12.4	7	1.24	With	17,000	YDEN0603
New	TPYD06J080B25.4R10	4.5	80	82	10	60	50	25.4	26	9.5	6	1.31	With	17,000	YDEN0603
	TPYD06J080B25.4R16	4.5	80	82	16	60	50	25.4	26	9.5	6	1.26	With	17,000	YDEN0603
New	TPYD06M100B32.0R12	4.5	100	102	12	70	50	32	25	14.4	8	1.85	With	15,000	YDEN0603
	TPYD06M100B32.0R22	4.5	100	102	22	70	50	32	25	14.4	8	1.78	With	15,000	YDEN0603
New	TPYD06J100B31.7R12	4.5	100	102	12	70	50	31.75	32	12.7	8	1.84	With	15,000	YDEN0603

	TPYD06M100B32.0R22	4.5	100	102	22	70	50	32	25	14.4	8	1.78	With	15,000	YDEN0603
New	TPYD06J100B31.7R12	4.5	100	102	12	70	50	31.75	32	12.7	8	1.84	With	15,000	YDEN0603
	TPYD06J100B31.7R22	4.5	100	102	22	70	50	31.75	32	12.7	8	1.76	With	15,000	YDEN0603
New	TPYD06M125B40.0R14	4.5	125	127	14	90	60	40	32	16.4	9	3.59	With	14,000	YDEN0603
	TPYD06M125B40.0R26	4.5	125	127	26	90	60	40	32	16.4	9	3.48	With	14,000	YDEN0603
New	TPYD06J125B38.1R14	4.5	125	127	14	90	60	38.1	38	15.9	10	3.61	With	14,000	YDEN0603
	TPYD06J125B38.1R26	4.5	125	127	26	90	60	38.1	38	15.9	10	3.56	With	14,000	YDEN0603
New	TPYD06M160B40.0R20	4.5	160	162	20	90	60	40	32	16.4	9	5.34	With	12,000	YDEN0603
	TPYD06M160B40.0R34	4.5	160	162	34	90	60	40	32	16.4	9	5.2	With	12,000	YDEN0603
New	TPYD06J160B38.1R20	4.5	160	162	20	90	60	38.1	38	15.9	10	5.43	With	12,000	YDEN0603

38.1

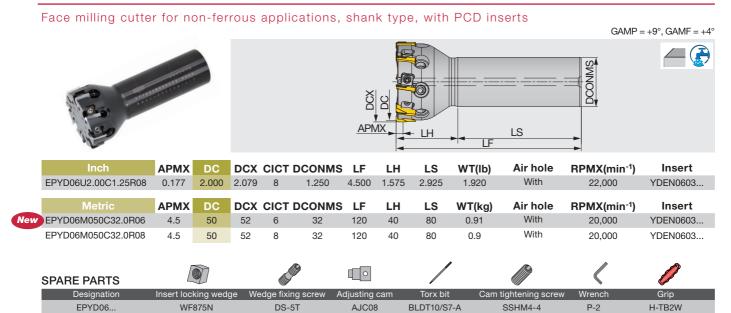
38

15.9 10 5.29

90

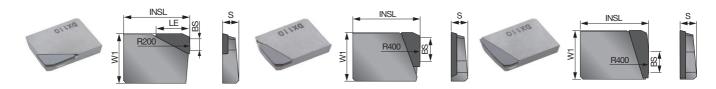
60

SPARE PARTS									
Designation	Insert locking wedge	Wedge fixing screw	Adjusting cam	Torx bit	Cam tightening screw	Wrench	Grip	Shell locking bolt	Shell locking bolt (Optional parts)
TPYD06U2.50B0.75R10	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	-	(C0.375X1.125H)
TPYD06U3.00B1.00R16	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	-	(C0.500X1.375H)
TPYD06U4.00B1.25R22	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	-	-
TPYD06U5.00, 6.00	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	-	(TMBA-0.750H)
TPYD06M063B22.0R10	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	CM10X30H	-
TPYD06*080B2*.*R16	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	CM12X30H	-
TPYD06*100B32.0R22	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	CM16X40H	-
TPYD06*100B31.7R22	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	TMBA-M16H	-
TPYD06*125B**.*R26	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	TMBA-M20H	-
TPYD06*160B**.*R34	WF875N	DS-5T	AJC08	BLDT10/S7-A	SSHM4-4	P-2	H-TB2W	TMBA-M20H	-


With

12,000

YDEN0603...


EPYD06

YDEN0603PD(F/S)R-D

YDEN0603PDFR-WD

YDEN0603PDFR-BD

YDEN0603PDCR-LD

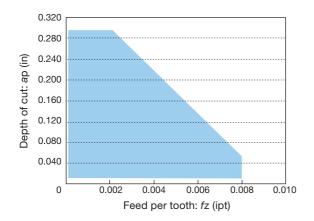
YDEN0603(04/08)PDFR-D

	Р	Ste	eel									
	M	M Stainless										
	K	K Cast iron										
	N	N Non-ferrous		*								
	S	S Superalloys										
	Н	На	ard mate	erials				★:F	First ch	oice		
					Р	CD						
Designation			APMX	Edge prep.	DX110			W1	INSL	S	BS	LE
YDEN0603PDFR-D			0.177	Without				0.375	0.500	0.122	0.087	0.256
YDEN0603PDSR-D			0.177	With				0.375	0.500	0.122	0.087	0.256
YDEN060304PDFR-D			0.177	Without		П		0.375	0.500	0.122	0.110	0.256
YDEN060308PDFR-D			0.177	Without		П		0.375	0.500	0.122	0.094	0.256
YDEN0603PDCR-LD			0.295	With*				0.375	0.500	0.122	0.087	0.375
YDEN0603PDFR-WD			-	Without				0.364	0.504	0.122	0.177	-
YDEN0603PDFR-BD			-	Without				0.364	0.508	0.122	0.157	-
	YDEN0603PDFR-D YDEN0603PDSR-D YDEN060304PDFR-D YDEN060308PDFR-D YDEN0603PDCR-LD YDEN0603PDFR-WD	Designation YDEN0603PDFR-D YDEN0603PDSR-D YDEN060304PDFR-D YDEN060308PDFR-D YDEN0603PDCR-LD YDEN0603PDFR-WD	Designation Designation Designation PDEN0603PDFR-D PDEN0603PDSR-D PDEN060304PDFR-D PDEN060308PDFR-D PDEN06030PDFR-D PDEN0603PDCR-LD PDEN0603PDFR-WD	M Stainless K Cast iron N Non-ferro S Superalloy H Hard mate	M Stainless K Cast iron N Non-ferrous S Superalloys H Hard materials	M Stainless K Cast iron N Non-ferrous ★ S Superalloys H Hard materials	M Stainless K Cast iron N Non-ferrous ★ S Superalloys H Hard materials	M Stainless K Cast iron N Non-ferrous M Stainless M Non-ferrous M Non-ferrous M Hard materials M Hard materials M Hard materials M M M M M M M M M	M Stainless K Cast iron N Non-ferrous M Stainless M Non-ferrous M Non-ferrous M Hard materials M Hard materials M Month Month	M Stainless K Cast iron N Non-ferrous ★ Superalloys H Hard materials PCD	M Stainless K Cast iron N Non-ferrous ★ Superalloys H Hard materials PCD PCD WITH INSL S YDEN0603PDFR-D 0.177 Without ● 0.375 0.500 0.122 YDEN060304PDFR-D 0.177 Without ● 0.375 0.500 0.122 YDEN060304PDFR-D 0.177 Without ● 0.375 0.500 0.122 YDEN060308PDFR-D 0.177 Without ● 0.375 0.500 0.122 YDEN0603PDFR-D 0.295 With ● 0.375 0.500 0.122 YDEN0603PDFR-WD - Without ● 0.364 0.504 0.122 YDEN0603PDFR-WD -	M Stainless K Cast iron N Non-ferrous S Superalloys H Hard materials PCD PCD W1 INSL S BS YDEN0603PDFR-D 0.177 Without YDEN0603PDFR-D 0.177 Without YDEN060304PDFR-D 0.177 Without YDEN060304PDFR-D 0.177 Without YDEN060308PDFR-D 0.177 Without YDEN0603PDFR-D 0.295 With YDEN0603PDFR-D 0.375 0.500 0.122 0.087 YDEN0603PDFR-WD - Without YDEN0603PDFR-WD - Without O .375 0.500 0.122 0.087 YDEN0603PDFR-WD - Without O .375 0.500 0.122 0.087

^{*} Edge preparation is applied only on the peripheral and chamfered sections. The remaining section of the cutting edge is left sharp.

: New product: Line up

Package quantity = 1 pc. per box



STANDARD CUTTING CONDITIONS

ISO	Workpiece materials	Grades	Cutting speed Vc (sfm)	Feed per tooth fz (ipt)
	Cast aluminum alloy / Die-cast (Si < 13%)	DX110	1640 - 13123	0.002 - 0.008
N	Cast aluminum alloy / Die-cast (Si ≥ 13%)	DX110	656 - 2625	0.002 - 0.008
	Aluminum alloy (1000 - 7000 series)	DX110	1640 - 13123	0.002 - 0.008
	Copper alloy	DX110	656 - 1640	0.002 - 0.008

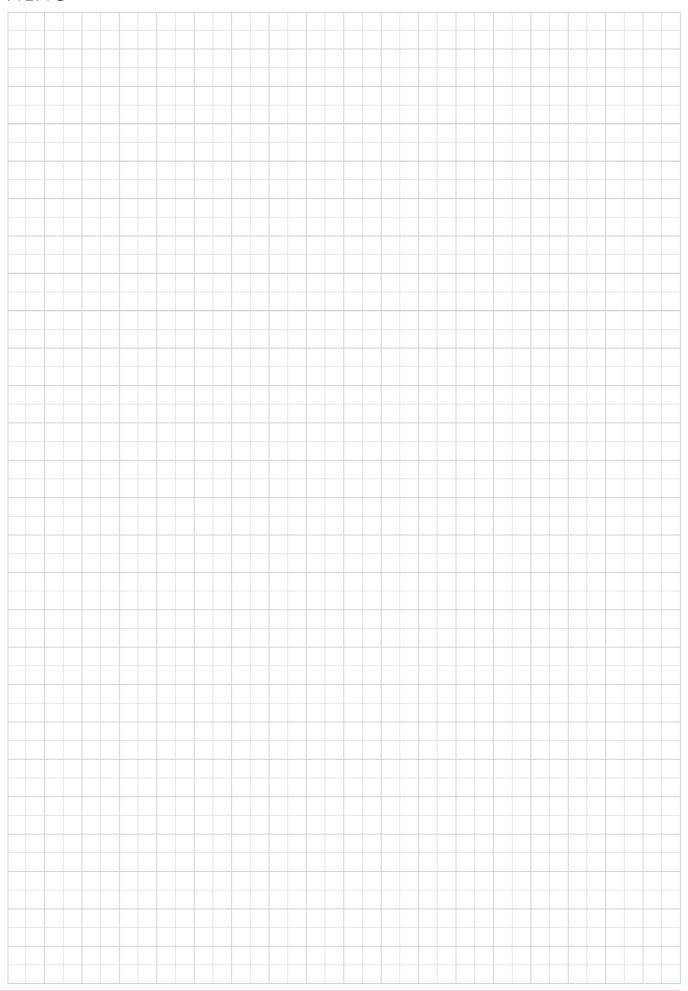
⁻ The values in the above list are of standard recommendations and may require adjustments in consideration with cutting depths and/or workpiece/machine rigidity.

APPLICATION RANGE

Cutter : TPYD06U3.00B1.00R16 (Ø = 3.150" z = 16)

Insert: YDEN0603PDCR-LD DX110

Workpiece material : ADC12 Cutting speed : Vc = 8245 sfm


Coolant : Wet

Machine : Vertical M/C, BT40, 18.5 kW

⁻ Use wiper inserts (-WD) for better surface requirements and deburring inserts (-BD) to remove burrs.

⁻ Always use wet cutting (emulsion coolant) for machining aluminum or copper alloys.

MEMO

Tungaloy America, Inc.

3726 N Ventura Drive, Arlington Heights, IL 60004, U.S.A.

Inside Sales: +1-888-554-8394

Technical Support: +1-888-554-8391

Fax: +1-888-554-8392 www.tungaloy.com/us

Tungaloy Canada

432 Elgin St. Unit 3, Brantford, Ontario N3S 7P7, Canada

Phone: +1-519-758-5779 Fax: +1-519-758-5791

www.tungaloy.com/ca

Tungaloy de Mexico S.A.

C Los Arellano 113, Parque Industrial Siglo XXI Aguascalientes, AGS, Mexico 20290 Phone:+52-449-929-5410 Fax:+52-449-929-541 www.tungaloy.com/mx

Scan for instant web access

www.tungaloy.com/us follow us at:

facebook.com/tungaloyamerica twitter.com/tungaloy instagram.com/tungaloyamerica

linkedin.com/company/tungaloy-america

To see Tungaloy products in action visit:

www.youtube.com/tungaloycorporation

Distributed by:

