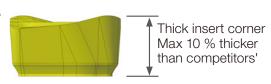


w w w.tungaloy.com/us Tungaloy Report No. 521-US

Small diameter high feed milling cutter with robust design for stability and efficiency

Indexable high feed milling cutter, available in as small as Ø0.375" diameter, offers free cutting and effective chip control in a wide range of applications.

Small diameter high feed milling cutter with impressive machining efficiency and reliability

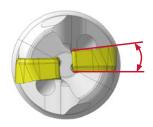

Built to perform at higher machining conditions

Strong insert corner for high feed operations

- Thick insert corner is designed to withstand fracturing force

Robust and easy-to-handle insert screws

- M2 screws reduce screw neck shears under high cutting forces. A larger screw enhances insert's fixation and easy handling.



Proper chip formation assures a reliable machining process

Positive inclination angle of the insert promotes smooth chip evacuation

- The positive cutting edge position contributes to a controlled chip formation and easy chip evacuation when machining next to shoulder and slotting operations.

Positive inclination angle

Proper chip control eliminates recuts and premature insert failure

Chip formation

Ideal curled chips

Crushed chips

P

Cutter : EXLS02U0.50C0.50LH2.00R02 Insert : LSMT0202ZER-HM AH3225

Workpiece material: 1055
Cutting speed: Vc = 656 sfm
Application: Slotting

Depth of cut : $ap = 0.020 \text{ mm} \times 20 \text{ passes}$

Coolant : Dry

Machine : Vertical M/C, CAT40

Ensures high efficient machining in various operations

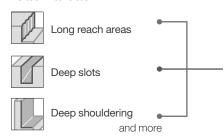
Effective in various 3D milling applications including helical interpolation and ramping

Shoulder milling

and more

Improved machining efficiency thanks to close pitch design and wider application capability

MRR is improved as much as 5 times!


Table below shows tool performance comparisons when machining 1055 carbon steel with a tool diameter of ø0.625"

	Metal removal rate (inch ³ /min)	Number of teeth	Cutting speed (sfm)	Feed per tooth (ipt)	Depth of cut (inch)	Width of cut (inch)
TUNGFFEED	4.836	5	656	0.031	0.020	0.390
Competitor's high feed cutter	0.998	4	656	0.008	0.020	0.390
Competitor's shoulder mill	3.744	4	656	0.003	0.200	0.390
Solid carbide endmill	2.340	5	328	0.003	0.200	0.390

High feed capability improves tool life and machining efficiency

Applications requiring a long overhang tool to avoid fixture or workpiece interference

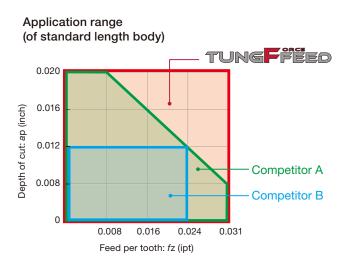
Problems with the conventional tool

- Chatter is more common with long reach areas, preventing higher parameters to be applied
- Chipping and fracture occurs due to chatter

TungForceFeed, with long overhang tool, performs at the highest efficiency and reliability in long reach machining application

Machining time compared with the conventional tool (L/D = 5, pocketing)

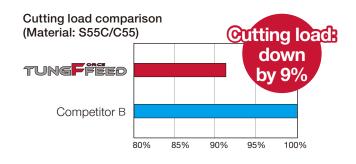




2 insert styles for various applications

High feed insert (LSMT-HM)

- Provides machining efficiency in a wide range of applications
- First choice insert for various applications including slotting, pocketing, or for long reach areas



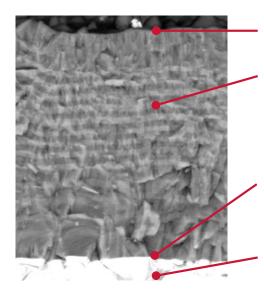
R0.079 insert (LSMT-MM) (To be released in 2019)

- Full profiling insert design ideal for semi-roughing and semi-finishing of die and mold parts
- Free cutting geometry eliminates chattering and improves surface finish quality
- Built-in side wiper helps reduce burr formation on walls and corners while improving wall accuracy

Burr formations on exit

TUNGFFEED Competitor

Grade lineup for various materials



AH3225

- Nano multi-layer coating technology with three major properties for optimal cutting edge integrity
- Increased resistance to wear, fracture, oxidation, built-up edge, and delamination

Technology 1 - Resistance to built-up edge

The coating surface prevents built-up edge

Technology 2 - Resistance to wear, oxidation, and fracture

Multi-layered coating is designed to resist wear and oxidation, while preventing micro-cracks from propagating in the coating layer for improved resistance to edge chipping

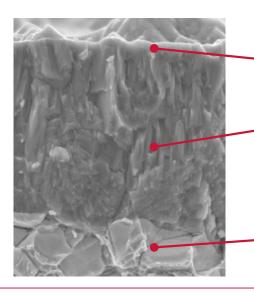
Technology 3 - Strong coating/substrate adhesion

Coating is optimized for strong adhesion property with substrate to maintain strong cutting edge integrity

Carbide substrate

High resistance to fracture

AH8015



- Incorporates a hard coating layer and carbide substrate.
- Strong resistance to wear, heat, and built-up edge, ideal for machining hard or difficult materials.

Special surface technology

PREMIUMTEC

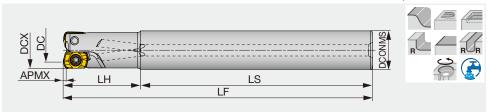
Smooth insert surface prevents chip adhesion!

Extremely hard layer of nano multi-layered AlTiN coating with high Al content

Increases hardness by 20 %
Prevents micro cracks from developing

Carbide substrate

High resistance to wear



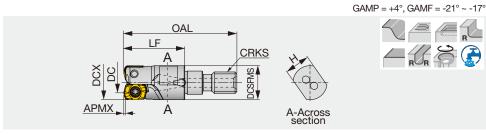
EXLS

Cylindrical type holder for high-feed milling, screw-on

 $GAMP = +4^{\circ}, GAMF = -21^{\circ} \sim -17^{\circ}$

Inch	APMX	DCX	CICT	DC	DCONMS	LS	LH	LF	WT (lbs) A	ir hole	Insert
EXLS02U0.37C0.37LH0.75R01	0.019	0.375	1	0.228	0.375	2.250	0.750	3.000	0.088	With	LSMT02
EXLS02U0.37C0.37LH1.25R01	0.019	0.375	1	0.228	0.375	2.250	1.250	3.500	0.110	With	LSMT02
EXLS02U0.37C0.31LH0.75R01	0.019	0.375	1	0.228	0.3125	2.250	0.750	3.000	0.066	With	LSMT02
EXLS02U0.50C0.50LH0.75R03	0.019	0.500	3	0.354	0.500	2.250	0.750	3.000	0.132	With	LSMT02
EXLS02U0.50C0.50LH2.00R02	0.019	0.500	2	0.354	0.500	2.250	2.000	4.250	0.176	With	LSMT02
EXLS02U0.50C0.37LH0.75R03	0.019	0.500	3	0.354	0.375	2.250	0.750	3.000	0.088	With	LSMT02
EXLS02U0.62C0.62LH1.50R05	0.019	0.625	5	0.479	0.625	2.500	1.500	4.000	0.308	With	LSMT02
EXLS02U0.62C0.62LH2.00R03	0.019	0.625	3	0.479	0.625	2.500	2.000	4.500	0.375	With	LSMT02

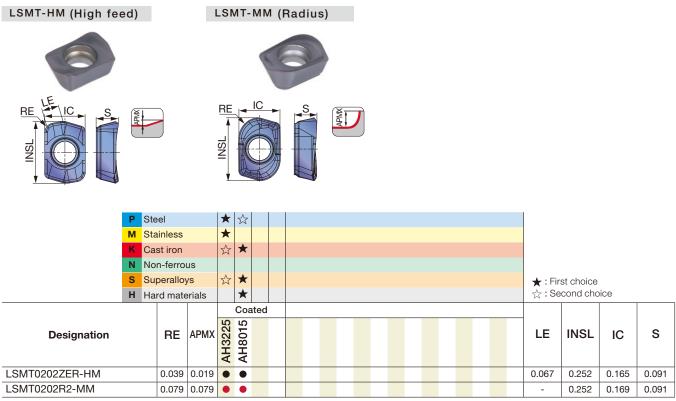
Metric	APMX	DCX	CICT	DC	DCONMS	LS	LH	LF	WT (kg)	Air hole	Insert
EXLS02M008C08.0LH16R01	0.5	8	1	4.29	8	59	16	75	0.02	With	LSMT02
EXLS02M008C08.0LH30R01	0.5	8	1	4.29	8	59	31	90	0.03	With	LSMT02
EXLS02M010C10.0LH20R02	0.5	10	2	6.28	10	60	20	80	0.04	With	LSMT02
EXLS02M010C10.0LH40R02	0.5	10	2	6.28	10	60	40	100	0.05	With	LSMT02
EXLS02M010C08.0LH20R02	0.5	10	2	6.28	8	60	20	80	0.03	With	LSMT02
EXLS02M012C12.0LH20R03	0.5	12	3	8.31	12	60	20	80	0.06	With	LSMT02
EXLS02M012C12.0LH50R02	0.5	12	2	8.31	12	60	50	110	0.08	With	LSMT02
EXLS02M012C10.0LH20R03	0.5	12	3	8.31	10	60	20	80	0.04	With	LSMT02
EXLS02M016C16.0LH30R05	0.5	16	5	12.31	16	70	30	100	0.14	With	LSMT02
EXLS02M016C16.0LH50R03	0.5	16	3	12.31	16	70	50	120	0.17	With	LSMT02


SPARE PARTS			
Designation	Clamping screw	Lubricant	Wrench
EXLS02U	CSPB-2H	M-1000	IP-6DB

TUNGFLEX

HXLS

Modular head for high-feed milling, screw-on (TungFlex)

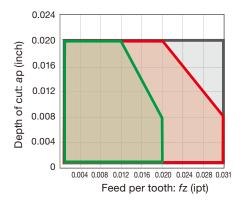


Metric	APMX	DCX	CICT	DC	OAL	LF	Н	DCSFMS	CRKS	WT (kg)	Air hole	Insert
HXLS02M008M06R01	0.5	8	1	4.29	33.5	19	7	9.5	M6	0.01	With	LSMT02
HXLS02M010M06R02	0.5	10	2	6.28	31.5	17	7	9.5	M6	0.01	With	LSMT02
HXLS02M012M06R03	0.5	12	3	8.31	31.5	17	7	10	M6	0.01	With	LSMT02
HXLS02M012M06R02	0.5	12	2	8.31	31.5	17	7	10	M6	0.01	With	LSMT02
HXLS02M016M08R05	0.5	16	5	12.31	40	23	10	13	M8	0.03	With	LSMT02
HXLS02M016M08R03	0.5	16	3	12.31	40	23	10	13	M8	0.03	With	LSMT02

SPARE PARTS			
Designation	Clamping screw	Lubricant	Wrench
HXLS02M	CSPB-2H	M-1000	IP-6DB

INSERTS

•: To be released in 2019 •: Line up



STANDARD CUTTING CONDITIONS

ISO	Workpiece m	aterials	Hardness	Priority	Grades	Cutting speed Vc (sfm)	Feed per tooth fz (ipt)	
	Carbon ste		- 300HB	First choice	AH3225	330 - 990	0.008 - 0.031	
	(1045, 1055,	etc.)	- 300HB	For wear resistance	AH8015	330 - 990	0.008 - 0.031	
P	Alloy stee		- 300HB	First choice	AH3225	330 - 990	0.008 - 0.031	
	(4140, SCr415	5, etc.)	- 300HB	For wear resistance	AH8015	330 - 990	0.008 - 0.031	
	Prehardened	steels	30 - 40HRC	First choice	AH8015	330 - 660	0.008 - 0.020	
	(NAK80, PX5	i, etc.)	30 - 40HRC	For impact resistance	AH3225	330 - 660	0.008 - 0.020	
M	Stainless si (304, 316, 6		- 200HB	First choice	AH3225	330 - 660	0.008 - 0.020	
	Gray cast i	rons	150 - 250HB	First choice	AH8015	330 - 990	0.008 - 0.031	
	(No.250B, e	(No.250B, etc.)		For impact resistance	AH3225	330 - 990	0.008 - 0.031	
	Ductile cast	Ductile cast irons		First choice	AH8015	260 - 660	0.008 - 0.031	
	(65-45-12,	etc.)	150 - 250HB	For impact resistance	AH3225	260 - 660	0.008 - 0.031	
	Titanium a	illoy	- 40HRC	First choice	AH3225	100 - 200	0.004 - 0.012	
S	(Ti-6Al-4V,	etc)	- 40HRC	For wear resistance	AH8015	100 - 200	0.004 - 0.012	
	Heat resistand	ce alloy	- 40HRC	First choice	AH8015	70 - 170	0.004 - 0.012	
	(Inconel, Haste	lloy, etc)	- 40HRC	For impact resistance	AH3225	70 - 170	0.004 - 0.012	
н	Hardened steel	H13, etc	40 - 50HRC	First choice	AH8015	260 - 490	0.004 - 0.020	
	Hardened Steel	D2/ D3, etc	50~60HRC	First choice	AH8015	160 - 230	0.004 - 0.012	

APPLICATION

LSMT02-HM

For standard shanks in ≤ 3xD

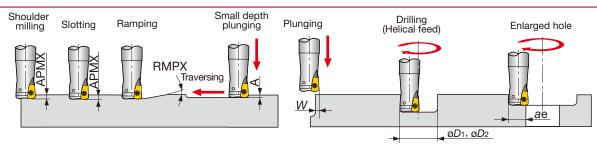
For long-neck shanks in ≥ 4xD

For modular head shanks in ≥ 7xD

LSMT02-MM

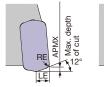
Feed per tooth: fz (ipt)

For standard shanks in ≤ 3xD

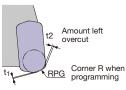

For long-neck shanks in ≥ 4xD

For modular head shanks in ≥ 7xD

^{*} When the DOC is 0.020" or more, the feed less than 0.006 ipt is recommended.


n Vf n Vf 6682 134 5011 200 301 Vc = 656 sfm, fz = 0.020 ipt 6682 134 5011 200 301 Vc = 656 sfm, fz = 0.020 ipt Vc = 656 sfm, fz = 0.020 ipt 5011 80 3759 120 180 Vc = 492 sfm, fz = 0.016 ipt 4013 64 3010 96 144 Vc = 394 sfm, fz = 0.016 ipt 6682 134 5011 200 301 5011 100 3759 150 226 Vc = 492 sfm, fz = 0.020 ipt 1334 11 1001 16 24	n 4009 4009 3007 2408 4009	CICT = 3 241 241 144 116 241	Vf CICT = 5 401 401 241 193
GICT = 2 GICT = 3 6682 134 5011 200 301 $Vc = 656 \text{ sfm}, fz = 0.020 \text{ ipt}$ 5011 80 3759 120 180 $Vc = 492 \text{ sfm}, fz = 0.016 \text{ ipt}$ 4013 64 3010 96 144 $Vc = 394 \text{ sfm}, fz = 0.016 \text{ ipt}$ 6682 134 5011 200 301 $Vc = 656 \text{ sfm}, fz = 0.020 \text{ ipt}$ 5011 100 3759 150 226 $Vc = 492 \text{ sfm}, fz = 0.020 \text{ ipt}$	4009 4009 3007 2408	241 241 144 116	401 401 241 193
Vc = 656 sfm, fz = 0.020 ipt $ 6682$	4009 3007 2408	241 144 116	401 241 193
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3007 2408	144 116	241 193
Vc = 656 sfm, fz = 0.020 ipt 5011 80 3759 120 180 $ Vc = 492 sfm, fz = 0.016 ipt $ 4013 64 3010 96 144 $ Vc = 394 sfm, fz = 0.016 ipt $ 6682 134 5011 200 301 $ Vc = 656 sfm, fz = 0.020 ipt $ 5011 100 3759 150 226 $ Vc = 492 sfm, fz = 0.020 ipt$	3007 2408	144 116	241 193
5011 80 3759 120 180 $Vc = 492 \text{ sfm}, fz = 0.016 \text{ ipt}$ 4013 64 3010 96 144 $Vc = 394 \text{ sfm}, fz = 0.016 \text{ ipt}$ 6682 134 5011 200 301 $Vc = 656 \text{ sfm}, fz = 0.020 \text{ ipt}$ 5011 100 3759 150 226 $Vc = 492 \text{ sfm}, fz = 0.020 \text{ ipt}$	2408	116	193
$Vc = 492 \text{ sfm, } fz = 0.016 \text{ ipt}$ $4013 \qquad 64 \qquad 3010 \qquad 96 \qquad 144$ $Vc = 394 \text{ sfm, } fz = 0.016 \text{ ipt}$ $6682 \qquad 134 \qquad 5011 \qquad 200 \qquad 301$ $Vc = 656 \text{ sfm, } fz = 0.020 \text{ ipt}$ $5011 \qquad 100 \qquad 3759 \qquad 150 \qquad 226$ $Vc = 492 \text{ sfm, } fz = 0.020 \text{ ipt}$	2408	116	193
4013 64 3010 96 144 $Vc = 394 \text{ sfm}, fz = 0.016 \text{ ipt}$ 6682 134 5011 200 301 $Vc = 656 \text{ sfm}, fz = 0.020 \text{ ipt}$ 5011 100 3759 150 226 $Vc = 492 \text{ sfm}, fz = 0.020 \text{ ipt}$			
$Vc = 394 \text{ sfm, } fz = 0.016 \text{ ipt}$ $6682 \qquad 134 \qquad 5011 \qquad 200 \qquad 301$ $Vc = 656 \text{ sfm, } fz = 0.020 \text{ ipt}$ $5011 \qquad 100 \qquad 3759 \qquad 150 \qquad 226$ $Vc = 492 \text{ sfm, } fz = 0.020 \text{ ipt}$			
6682 134 5011 200 301 $Vc = 656 \text{ sfm}, fz = 0.020 \text{ ipt}$ 5011 100 3759 150 226 $Vc = 492 \text{ sfm}, fz = 0.020 \text{ ipt}$	4009	241	401
Vc = 656 sfm, fz = 0.020 ipt 5011 100 3759 150 226 $Vc = 492 sfm, fz = 0.020 ipt$	4009	241	401
5011 100 3759 150 226 Vc = 492 sfm, fz = 0.020 ipt			
Vc = 492 sfm, fz = 0.020 ipt			
	3007	180	301
1334 11 1001 16 24			
	801	19	32
Vc = 131 sfm, fz = 0.008 ipt			
998 8 749 12 18	599	14	24
$V_{\rm C} = 98 {\rm sfm}, fz = 0.008 {\rm ipt}$			
4013 48 3010 72 108	2408	87	144
Vc = 394 sfm, fz = 0.012 ipt			
2007 16 1505 24 36	1204	29	48

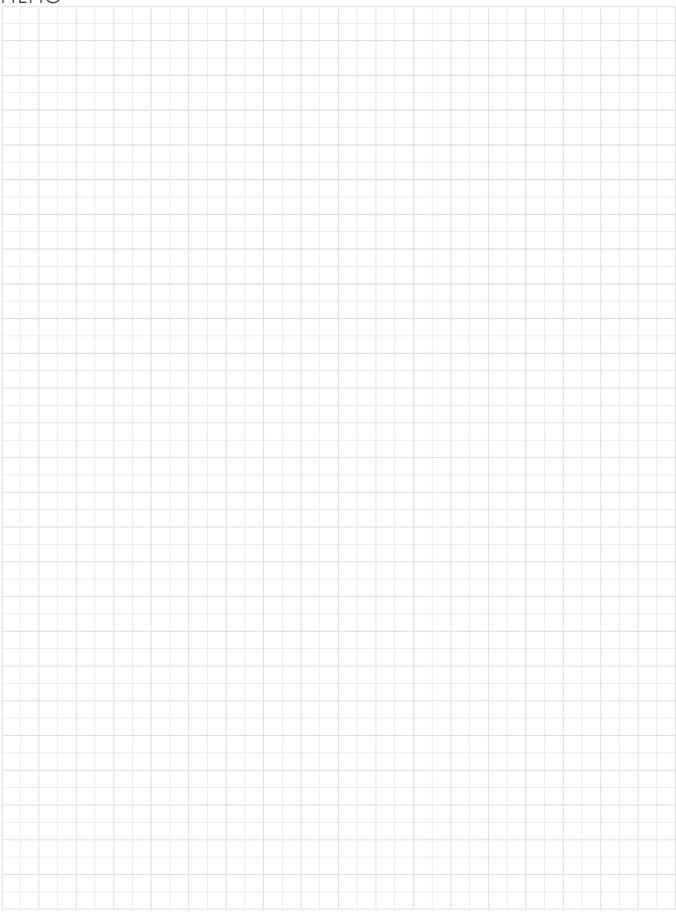
MACHINING APPLICATIONS

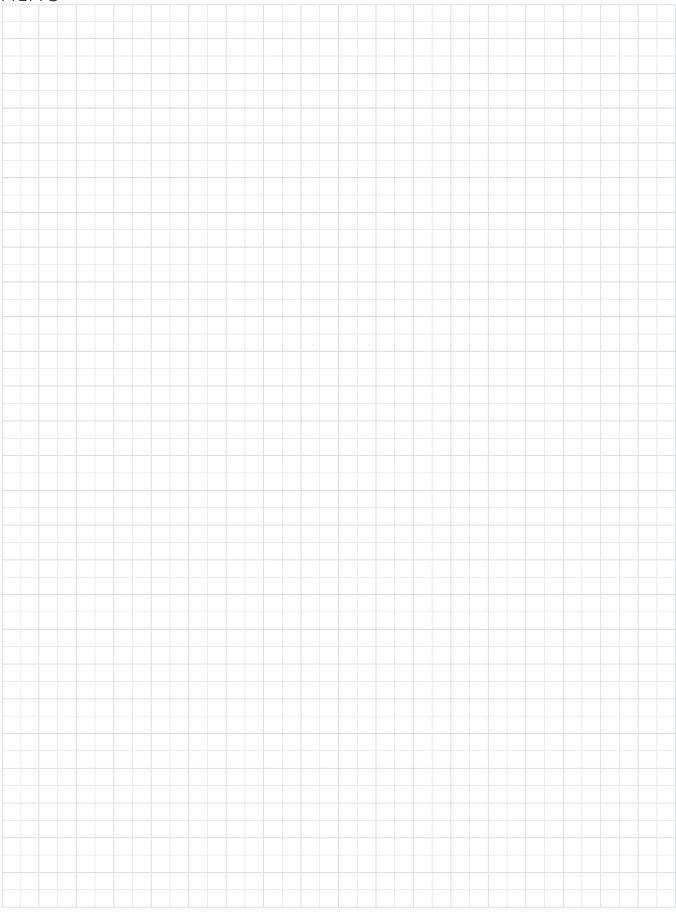


		Max. depth of cut	Max. ramping angle	Max. plunging depth	Max. cutting width in plunging	Min. machining	Max. machining	Max. cutting width in enlarged hole
Designation	DC	APMX	RMPX	Α	W	øD₁	øD ₂	ae
EXLS02U0.37	0.375	0.019	3.6°	0.007	0.078	0.513	0.730	0.292
EXLS02U0.50	0.500	0.019	1.8°	0.007	0.078	0.763	0.980	0.417
EXLS02U0.62	0.625	0.019	1.3°	0.007	0.078	1.013	1.230	0.542

Tool geometry on programming

LSMT02...-HM


Corner R when programming: RPG	Amount left uncut t1 (inch)	Amount left overcut t2 (inch)
0.039*Recommend	0.006	0
0.059	0.003	0.006
0.079	0	0.013


PRACTICAL EXAMPLES

Workpiece type	Stator shaft	Stamping die part
Cutter	EXLS02U0.37C0.31LH0.75R01 (ø0.375", CICT = 1)	HXLS02M010M06R02 (ø10mm, CICT = 2)
Insert	LSMT0202ZER-HM	LSMT0202ZER-HM
Grade	AH3225	AH3225
	1045	H13(before hardening)
Workpiece material	P	P
Cutting speed : Vc (sfm)	492	394
ν Feed per tooth: fz (ipt)	0.020 (Competitor : fz = 0.012)	0.024
Depth of cut : ap (inch)	0.012	0.012
Depth of cut : ap (inch) Width of cut : ae (inch) Machining	0.315	0.197
Machining	Grooving	Pocketing
Coolant	Wet	Dry
Machine	Vertical M/C, CAT30	Vertical M/C, CAT40
Results	Productivity 1.7 times! TungForceFeed insert's light cutting action ensured reliable high feed milling improving MRR by 1.7x	Tool life 1.3 times! AH3225 prevented wear and chipping, while improving tool life by 1.3 times.
Workpiece type	Stamping die part	Turbine blade
Cutter	EXLS02U0.50C0.50LH2.00R02 (Ø0.5", CICT = 2)	EXLS02U0.37C0.31LH0.75R01 (Ø0.375", CICT = 1)
Insert	LSMT0202ZER-HM	LSMT0202ZER-HM
Grade	AH3225	AH8015
	H13 (45HRC)	Inconel 939
Workpiece material	H	S
Cutting speed : Vc (sfm)	371	98
Feed per tooth: fz (ipt)	0.020 (Competitor : $fz = 0.004$)	0.008 (Competitor : fz = 0.002)
Depth of cut : ap (inch)	0.012	0.012
Depth of cut : ap (inch) Width of cut : ae (inch) Machining	0.472	0.315
Machining	Face milling	Grooving
Coolant	Air	Dry
Machine	Vertical M/C, CAT50	Vertical M/C, CAT50
Results	Metal removal rate: MRR (inch3/min) 2 2 5 times!	Metal removal rate: MRR (inch3/min) 2 times!

MEMO

MEMO

Check our site and our App to get more info! Product Lines

Tungaloy America, Inc.

3726 N Ventura Drive, Arlington Heights, IL 60004, U.S.A.

Inside Sales: +1-888-554-8394

Technical Support: +1-888-554-8391

Fax: +1-888-554-8392 www.tungaloy.com/us

Tungaloy Canada

432 Elgin St. Unit 3, Brantford, Ontario N3S 7P7, Canada

Phone: +1-519-758-5779 Fax: +1-519-758-5791

www.tungalov.com/ca

www.tungaloy.com/mx

Tungaloy de Mexico S.A.

C Los Arellano 113, Parque Industrial Siglo XXI Aguascalientes, AGS, Mexico 20290 Phone:+52-449-929-5410 Fax:+52-449-929-5411

Scan for instant web access

www.tungaloyamerica.com

follow us at:

facebook.com/tungaloyamericatwitter.com/tungaloyamerica

To see this product in action visit:

www.youtube.com/tungaloycorporation

Distributed by:

