

Square shoulder milling cutter

Tungaloy Report No. 501-US

High productive and cost-effective shoulder milling cutter - Now available with new AH3225 grade

INDUSTRY 4.0

New AH3225 grade offers extended tool life for maximum economical benefits

Economical shoulder mill with an innovative 6-edged geometry offers maximum performance in various applications

Innovative insert design for improved productivity

High efficiency

Inserts are available in 2 sizes for high cutter density and cutting depths over conventional double-sided 6-edged inserts.

High machining flexibility

The cutting edge is configured with a large curve with an optimal inclination, providing not only effective chip evacuation during heavy stock removal but also low cutting force in light depth of cut.

Size 07

High insert density for efficiency

DoForce-Tri offers insert density of up to 2 times as high as competitors' shoulder cutters of the same depth of cut, ensuring maximum efficiency thanks to its curved cutting edge with optimal inclination.

Superior surface finishing

Every cutting edge is built with a wiper, thanks to the innovative flank design.

Size 12

Insert lineup for various applications

TNMU-MJ
with built-in wipers
1st choice
Versatile geometry with
good surface finish

TNGU-MJ with built-in wipers

For close tolerance

TNMU-R-MJ
Radius insert
Strong cutting edge
design with large corner
radius

TNMU-NMJ
Serrated insert*
Ensures free cutting and
good chip control during
heavy milling

*Please see page 10 for instruction for use

Lineup of each insert size

Size	Max. depth of cut (in)	Corner radius (in)	Workpiece material	Tool diameter (in) Number of inserts						
07	0.256"	0.0157" / 0.0314"	P M K S	00.750						
12	0.433"	0.0314" / 0.0629" / 0.0787"	P M K S	01.250" 01.500" 02.000" 02.500" 03.000" 04.000" 05.000" 06.000" 02.500" 03.000" 04.000" 05.000" 06.000" 02.500" 03.000" 04.000" 05.000" 06.000" 02.500" 03.000" 04.000" 05.000" 06.000" 02.500" 03.000" 04.000" 05.000" 04.000" 05.000" 04.000" 05.000" 04.000" 05.000" 04.000" 04.000" 05.000" 04.000" 04.000" 05.000" 04.000" 04.000" 05.000" 04.000" 04.000" 05.000" 04.000						

GRADES

Enriched grade lineup covers various materials and machining applications

Offers three PVD and two CVD grades

- Nano multi-layer coating technology with three major properties for optimal cutting edge integrity
- Increased resistance to wear, fracture, oxidation, built-up edge, and delamination

Resistance to built-up edge

The coating surface prevents built-up edge

Resistance to wear, oxidation, and fracture

Multi-layered coating is designed to resist wear and oxidation, while preventing micro-cracks from propagating in the coating layer for improved resistance to edge chipping

Strong coating / substrate adhesion

Coating is optimized for strong adhesion property with substrate to maintain strong cutting edge integrity

Carbide substrate

High resistance to fracture

■ Long tool life

AH120

Cutter : TPTN12U2.00B0.75R05

 $(\emptyset 1.969", z = 5)$

: TNMU120708PER-MJ AH3225

Workpiece material: 1055

Cutting speed : Vc = 656 sfm: fz = 0.006 iptFeed per tooth Depth of cut : ap = 0.118"Width of cut : ae = 1.181"

Coolant : Dry

Machine : Vertical M/C, CAT40

PREMIUMTEC

- PVD grade for high fracture

- Most suitable for stainless

steel and steel in general

cutting parameters

AH3135

resistance

- PVD grade with well-balanced wear and fracture resistance
- Ideal for general machining of steel and cast iron

T1215

- CVD grade with outstanding wear and chipping resistance
- Best for cast iron at highspeed machining

T3225

CVD grade with high chipping and fracture resistance

APPLICATION AREAS

CUTTING PERFORMANCE

■ Low cutting forces

Size 07

Cutter : EPTN07U1.00C1.00R04 (ø1.000", z = 4)

Insert : TNMU070308PER-MJ AH3135

Workpiece material : 1055 (180 HB)
Cutting speed : Vc = 656 sfm
Feed per tooth : fz = 0.004 ipt
Depth of cut : ap = 0.059"
Width of cut : ae = 0.591"

Number of insert : 1 Coolant : Dry

Machine : Vertical M/C, CAT50

Unique cutting edge configuration can reduce cutting force to the same level produced by positive insert when $ap \le 0.059$ ".

Size 12

Cutter : TPTN12U2.00B0.75R05 (ø1.000", z = 4) Insert : TNMU120708PER-MJ AH3135

TNMU120708PER-NMJ AH3135

Workpiece material : 1055 (180 HB) Cutting speed : Vc = 492 sfm Feed per tooth : fz = 0.006 ipt Depth of cut : ap = 0.098", 0.197" Width of cut : ae = 1.181"

Number of inserts : 2 Coolant : Dry

Machine : Vertical M/C, CAT50

The MJ style insert ensures freer cutting than positive insert at light depths of cut. While the NMJ insert provides lower cutting force at greater depths of cut.

■ High surface quality

Size 07

Cutter : EPTN07U1.00C1.00R04

(ø1.000", z = 4, Competitor: z = 5) Insert : TNMU070308PER-MJ AH3135

Workpiece material : 1055 (180 HB)

Cutting speed : Vc = 656 sfmFeed per tooth : fz = 0.004 iptDepth of cut : ap = 0.118"

Width of cut : ae = 0.591"

Coolant : Dry

Machine : Horizontal M/C, CAT40

Built-in wiper provides quality surface finishing, while also prolonging insert life.

TPTN07

Square shoulder mill, with screw clamp system, for double sided triangular inserts

 $GAMP = +4.2^{\circ} \sim +4.7^{\circ}, GAMF = -15.4^{\circ} \sim -11.2^{\circ}$

Inch	APMX	DC	CICT	DCSFMS	LF ⁽¹⁾	DCONMS	CBDP	KWW	b	WT(lb)	Air hole	Insert
TPTN07U2.00B0.75R08	0.256	2.000	8	1.850	1.575	0.750	0.750	0.315	0.197	0.930	With	TNMU0703

(1) The value is true with R0.8 insert. For R0.4, please refer to page 10.

^{*} Torque (lb·ft): CSPB-2.5SH = 0.81

TPTN12

Square shoulder mill, with screw clamp system, for double sided triangular inserts

Inch	APMX	DC	СІСТ	DCSFMS	LF	DCONMS	CBDP	KWW	b	WT(lb)	Air hole	Insert
TPTN12U2.00B0.75R05	0.433	2.000	5	1.850	1.575	0.750	0.750	0.315	0.197	0.890	With	TN*U1207
TPTN12U2.50B0.75R06	0.433	2.500	6	1.850	1.575	0.750	0.750	0.315	0.197	1.330	With	TN*U1207
TPTN12U3.00B1.00R08	0.433	3.000	8	2.835	1.969	1.000	1.024	0.374	0.236	2.440	With	TN*U1207
TPTN12U4.00B1.50R10	0.433	4.000	10	3.150	1.969	1.500	1.181	0.626	0.394	3.110	With	TN*U1207
TPTN12U5.00B1.50R12	0.433	5.000	12	3.150	2.480	1.500	1.181	0.626	0.394	5.330	With	TN*U1207
TPTN12U6.00B2.00R12N	0.433	6.000	12	3.858	2.48	2.000	1.496	0.748	0.433	4	Without	TN*U1207

SPARE PARTS				
Designation	Clamping screw	Grip	Torx bit	Lubricant
TPTN12U**R	CSPB-3.5	H-TB2W	BLDIP15/S7	M-1000

^{*} Torque (lb·ft): CSPB-3.5 = 2.58

EPTN07

Square shoulder endmill, with screw clamp system, for double sided triangular inserts

 $GAMP = +4.2^{\circ} \sim +4.7^{\circ}, GAMF = -15.4^{\circ} \sim -11.2^{\circ}$

Inch	APMX	DC	CICT	DCONMS	LS	LH	LF ⁽¹⁾	WT(lb)	Air hole	Insert
EPTN07U0.75C0.75R02	0.256	0.750	2	0.750	2.500	1.000	3.500	0.370	With	TNMU0703
EPTN07U0.75C0.75R02L	0.256	0.750	2	0.750	4.750	1.670	6.420	0.710	With	TNMU0703
EPTN07U1.00C1.00R03	0.256	1.000	3	1.000	3.000	1.500	4.500	0.880	With	TNMU0703
EPTN07U1.00C1.00R03L	0.256	1.000	3	1.000	5.700	3.000	8.700	1.720	With	TNMU0703
EPTN07U1.00C1.00R04	0.256	1.000	4	1.000	3.000	1.500	4.500	0.880	With	TNMU0703
EPTN07U1.25C1.25R04	0.256	1.250	4	1.250	3.000	1.500	4.500	1.390	With	TNMU0703
EPTN07U1.25C1.25R05	0.256	1.250	5	1.250	3.000	1.500	4.500	1.390	With	TNMU0703
EPTN07U1.50C1.25R06	0.256	1.500	6	1.250	2.250	2.250	4.500	1.460	With	TNMU0703

(1) The value is true with R0.8 insert. For R0.4, please refer to page 10.

^{*} Torque (lb·ft): CSPB-2.5SH = 0.81

EPTN12

Square shoulder endmill, with screw clamp system, for double sided triangular inserts

^{*} Torque (lb·ft): CSPB-3.5 = 2.58

INSERT

TNMU07-MJ

TNGU12-MJ/TNMU12-MJ

TNMU12-R-MJ

TNMU12-NMJ

Second choice

l		RE	APMX	4H120				T3225					LE	IC	S
	Н	Hard mate	erials		C	oate	he						☆:S	econd (choid
	S	Superallo	у	\star		☆								rst cho	
	N	Non-ferro	us												
	K	Cast iron		*	☆		☆								
	M	Stainless			☆	*		☆							
	Р	Steel		$\stackrel{\wedge}{\sim}$	*	☆		$\stackrel{\wedge}{\sim}$							

				C	oate	u					
Designation	RE	APMX	AH120	AH3225	AH3135		T3225	LE	IC	S	BS
TNMU070304PER-MJ	0.016	0.256	•	•	•			0.256	0.224	0.161	0.024
TNMU070308PER-MJ	0.031	0.256	•	•	•			0.256	0.224	0.161	0.024
TNGU120708PER-MJ	0.031	0.433	•	•		•		0.472	0.375	0.277	0.046
TNMU120708PER-MJ	0.031	0.433	•	•	•	•	•	0.472	0.375	0.28	0.046
TNMU120708PER-NMJ	0.031	0.433	•	•	•			0.472	0.375	0.28	0.046
TNMU1207R16PER-MJ	0.063	0.433	•	•	•			0.472	0.375	0.271	-
TNMU1207R20PER-MJ	0.079	0.433	•	•	•	•		0.472	0.375	0.265	-

: New product : Line up

Notes

■LF and LH dimensions for R0.4, size 07 insert

Add 0.0087" to LH and LF measurements when R0.4 insert is used.

■ Serrated size 12 insert (NMJ)

To obtain good wall accuracy, the serrated inserts must be arranged in alternative orders on the cutter so that the same serrated edge will not cut the same surface twice, generating steps on the wall. One of the serration grooves (marked in red) on the cutting edge has a irregular shape, and this must be placed alternatively as shown below by A and B.

Check the insert orientations if steps are produced on the wall surface.

The groove in red is asymmetric for easy identification

Insert orientation for odd number of teeth

STANDARD CUTTING CONDITIONS

Size 07 inserts

ISO	Workpiece material	Hardness	Priority	Grade	Cutting speed Vc (sfm)	Feed per tooth fz (ipt)
	Carbon steel	- 200 HB	First choice	AH3225	328 - 820	0.003 - 0.008
	1018, 1026, etc.	- 200 HB	For fracture resistance	AH3135	328 - 820	0.003 - 0.008
P	High Carbon steel, Alloy steel	- 300 HB	First choice	AH3225	328 - 755	0.003 - 0.006
	1045, 4140, etc.	- 300 HB	For fracture resistance	AH3135	328 - 755	0.003 - 0.006
	Prehardened steel	30 - 40 HRC	First choice	AH3225	328 - 591	0.003 - 0.006
	H-13, P-20, etc.	30 - 40 HRC	For fracture resistance	AH3135	328 - 591	0.003 - 0.006
M	Stainless steel	-	First choice	AH3135	295 - 656	0.003 - 0.006
IVI	304, 316, etc.	-	For wear resistance	AH3225	295 - 656	0.003 - 0.006
	Gray cast iron	150 - 250 HB	First choice	AH120	459 - 820	0.003 - 0.008
K	Class 25, Class 30, etc.	150 - 250 HB	For fracture resistance	AH3225	459 - 820	0.003 - 0.008
	Ductile cast iron	150 - 250 HB	First choice	AH120	361 - 656	0.003 - 0.006
	60-40-18, 80-55-06, etc.	150 - 250 HB	For fracture resistance	AH3225	361 - 656	0.003 - 0.006
S	Titanium alloys Ti-6Al-4V, etc.	-	First choice	AH3135	66 - 197	0.003 - 0.006
3	Heat-resistant alloys Inconel 718, etc.	-	First choice	AH120	66 - 131	0.003 - 0.004

STANDARD CUTTING CONDITIONS

Size 12 inserts

ISO	Workpiece material	Hardness	Priority	Grade	Chipbreaker	Cutting speed Vc (sfm)	Feed per tooth fz (ipt)
		- 200 HB	First choice	AH3225	MJ	328 - 820	0.003 - 0.012
	Carbon steel	- 200 HB	For fracture resistance	AH3135	MJ	328 - 820	0.003 - 0.012
	1018, 1026, etc.	- 200 HB	For wear resistance	T3225	MJ	328 - 984	0.003 - 0.012
		- 200 HB	Low cutting force	AH3225	NMJ	328 - 820	0.003 - 0.006
		- 300 HB	First choice	AH3225	MJ	328 - 755	0.003 - 0.012
P	High Carbon steel, Alloy steel	- 300 HB	For fracture resistance	AH3135	MJ	328 - 755	0.003 - 0.012
	1045, 4140, etc.	- 300 HB	For wear resistance	T3225	MJ	328 - 919	0.003 - 0.012
		- 300 HB	Low cutting force	AH3225	NMJ	328 - 755	0.003 - 0.006
		30 - 40 HRC	First choice	AH3225	MJ	328 - 591	0.003 - 0.010
	Prehardened steel	30 - 40 HRC	For fracture resistance	AH3135	MJ	328 - 591	0.003 - 0.010
	H-13, P-20, etc.	30 - 40 HRC	For wear resistance	T3225	MJ	328 - 656	0.003 - 0.010
		30 - 40 HRC	Low cutting force	AH3225	NMJ	328 - 591	0.003 - 0.006
		-	First choice	AH3135	MJ	295 - 656	0.003 - 0.010
M	Stainless steel 304, 316, etc.	-	For wear resistance	T3225	MJ	295 - 820	0.003 - 0.010
		-	Low cutting force	AH3135	NMJ	295 - 656	0.003 - 0.006
		150 - 250 HB	First choice	AH120	MJ	459 - 820	0.003 - 0.012
	Gray cast iron	150 - 250 HB	For fracture resistance	AH3225	MJ	459 - 820	0.003 - 0.012
	Class 25, Class 30, etc.	150 - 250 HB	For wear resistance	T1215	MJ	459 - 984	0.003 - 0.012
K		150 - 250 HB	Low cutting force	AH120	NMJ	459 - 820	0.003 - 0.006
		150 - 250 HB	First choice	AH120	MJ	361 - 656	0.003 - 0.010
	Ductile cast iron	150 - 250 HB	For fracture resistance	AH3225	MJ	361 - 656	0.003 - 0.010
	60-40-18, 80-55-06, etc.	150 - 250 HB	For wear resistance	T1215	MJ	361 - 820	0.003 - 0.010
		150 - 250 HB	Low cutting force	AH120	NMJ	361 - 656	0.003 - 0.006
	Titanium alloys	-	First choice	AH3135	MJ	66 - 197	0.003 - 0.008
	Ti-6Al-4V, etc.	-	Low cutting force	AH3135	NMJ	66 - 197	0.003 - 0.006
S	Heat-resistant alloys	-	First choice	AH120	MJ	66 - 131	0.003 - 0.007
	Inconel 718, etc.	-	Low cutting force	AH120	NMJ	66 - 131	0.003 - 0.006

Note: For NMJ chipbreaker, use a feed rate that satisfies the following theoretical chip thickness:

Designation	Chip thickness (in)
TNMU120708PER-NMJ	< 0.008"

PRACTICAL EXAMPLES

	Workpiece type	Bracket	Machine part					
	Cutter	TPTN12U2.00B0.75R05 (ø2.000", z = 5)	EPTN12M040C32.0R04N (ø40 mm, z = 4)					
	Insert	TNMU120708PER-MJ	TNMU120708PER-NMJ					
	Grade	AH3225	AH3135					
		Low carbon steel	S45C / C45					
	Workpiece material	P	P					
	Cutting speed : Vc (sfm)	460	840					
ns	Feed per tooth: fz (ipt)	0.005	0.006					
Cutting conditions	Feed speed : Vf (ipm)	21.063	44					
nd	Depth of cut : ap (in)	0.008	0.157					
ဝ	Width of cut : ae (in)	1.417	1.060					
ng	Machining	Shoulder milling	Shoulder milling					
ŧ		-						
$\ddot{\circ}$	Coolant	Wet	None					
	Machine	Vertical M/C, CAT40	Horizontal M/C, CAT40					
	Results	Tool life 1.5 times! The combination of special insert geometry and grade for inserts in DoForce-Tri series helps extend tool life compared to the competitor.	The stimes! 1.8 times! 1.8 times! DoForce-Tri's NMJ chipbreaker with serrations reduced cutting force eliminating chatter. MRR has been improved to double the depth of cut with long and stable tool life.					
	Workpiece type	Crankshaft	Machine part					
_	Cutter	TPTN12M160B40.0R10N (ø6.299", z = 10)	EPTN07U1.00C1.00R04 (Ø1.000", z = 4)					
_	Insert	TNMU120708PER-MJ	TNMU070308PER-MJ					
	Grade	AH3135	AH3135					
	Grade							
	Workpiece material	1055 P	304 M					
	Cutting speed : Vc (sfm)	443	660					
ns	Feed per tooth: fz (ipt)	0.006	0.005					
ţį	Feed speed : Vf (ipm)	16.535	51.1					
conditions	Depth of cut : ap (in)	0.118	0.08					
00	Width of cut : ae (in)	4.921	1					
ng	Machining	Shoulder milling	Slotting					
Cutting	Coolant	Air blast	Air blast					
ರ	Machine	Horizontal boring M/C, CAT50	Horizontal M/C,CAT40					
	INIGOTIILE	HORZORIAL BORRY WI/O, CATOU	HOHZOHIAI M/O,OAI40					
	Results	Productivity 2 times! Open Competitor The competitor's shoulder mill chattered at high	Productivity 3.2 times! 1.6 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
		cutting parameters. DoForce-Tri's helical cutting edges produced stable machining at 1.7 times number of teeth and 1.2 times depth of cut.	competitor's positive inserts thanks to higher number of teeth on the cutter increasing feed per tooth. No sacrifice for surface quality.					

PRACTICAL EXAMPLES

Workpiece type	Bearing housing	Bracket					
		EPTN07U1.00C1.00R04 (ø1.000", z = 4)					
Insert	TNMU070308PER-MJ	TNMU070308PER-MJ					
Grade	AH3135	AH120					
	No.250B	100-70-03					
Workpiece material	K	K					
Cutting speed : Vc (sfm)	1050	590					
		0.003					
		27.165					
		0.157					
		0.866					
. ,		Face milling					
	ū	Air blast					
		Vertical M/C, CAT40					
Macrinic							
Results	The competitor of teeth and increased feed Productivity 1.3 times! 1.3 times!	Productivity 1.8 1.2 Longitude of the state of the sta					
Workpiece type	Carrier	Mold base					
Cutter	TPTN12U2.50B0.75R06 (ø2.5", z = 6)	TPTN12J080B25.4R06 (ø80 mm, z = 6)					
Insert	1 1	TNMU120708PER-MJ					
Grade		AH120					
		FCD600 / GGG60 / 600-3					
Workpiece material	K	K					
Cutting speed : Vc (sfm)	500	660					
Feed per tooth: fz (ipt)	0.008	0.008					
Feed speed : Vf (ipm)	37.400	38.00					
Depth of cut : ap (in)	0.236	0.197					
Width of cut : ae (in)	0.800	1.570					
Machining	Face milling	Shoulder milling					
Coolant	Wet	Wet					
Machine	Horizontal M/C, CAT50	Horizontal M/C, CAT50					
Results	Tool life 250 250 250 250 250 250 250 250 250 250	Productivity 2.7 times! Competitor The competitor's shoulder mill chattered at high cutting parameters. DoForce-Tri's helical cutting edges produced high wall accuracy at double					
	Grade Workpiece material Cutting speed: Vc (sfm) Feed per tooth: fz (ipt) Feed speed: Vf (ipm) Depth of cut: ap (in) Width of cut: ae (in) Machining Coolant Machine Results Workpiece type Cutter Insert Grade Workpiece material Cutting speed: Vc (sfm) Feed per tooth: fz (ipt) Feed speed: Vf (ipm) Depth of cut: ap (in) Width of cut: ae (in) Machining Coolant Machine	Insert Grade AH3135 No.250B Workpiece material No.250B Cutting speed: Vc (sfm) 1050 Feed per tooth: fz (ipt) 0.002 Feed speed: Vf (ipm) 37.795 Depth of cut: ap (in) 0.945 Machining Grooving					

FIXEDTORQUEWRENCH

Achieves high cutting edge precision thanks to uniform clamping force

Easy setting

Handle

Multi-component handle optimally designed for the hand enables ideal power transmission.

Mechanism

Driver clicks to alert the operator when the preset torque is attained. IDs printed on the handle end allow easy identification of the driver specs. Driver has unlimited loosening torque. Driver mechanism is industrial-lubricant-resistant.

■ High repeatability & robustness

Robustness / Fitting

Wiha ChromTop® finish on tip for a perfect fit every time. Durability thanks to high quality chrome-vanadium-molybdenum steel, through hardened, chrome-plated.

Versatility

Extra slim blade geometry is particularly suitable for applications with confined narrow access.

Designation	Stock	Torque (lbf·ft)	Accuracy (%)	øD	L
TW-D-0.6NM	•	0.44	10	1.339"	5.118"
TW-D-0.9NM	•	0.66	10	1.339"	5.118"
TW-D-1.1NM	•	0.81	10	1.339"	5.118"
TW-D-1.4NM	•	1.03	10	1.339"	5.118"
TW-D-2.5NM	•	1.84	10	1.339"	5.118"
TW-D-3.0NM	•	2.21	10	1.339"	5.118"
TW-D-3.5NM	•	2.58	10	1.339"	5.118"

1 piece per package

C. C	DIDM	EL .
		L2
◀		

Designation	Stock	TORX geom.	н	L	L2	Fig.
TW-B-T6	•	T6	0.157"	6.890"	1.654"	1
TW-B-T7	•	T7	0.157"	6.890"	1.654"	1
TW-B-T8	•	T8	0.157"	6.890"	1.654"	1
TW-B-T9	•	Т9	0.157"	6.890"	1.654"	1
ΓW-B-T10	•	T10	0.157"	6.890"	1.654"	1
ΓW-B-T15	•	T15	0.157"	6.890"	1.654"	1
TW-B-6IP	•	6IP	0.157"	6.890"	1.654"	2
TW-B-7IP	•	7IP	0.157"	6.890"	1.654"	2
TW-B-8IP	•	8IP	0.157"	6.890"	1.654"	2
ΓW-B-10IP	•	10IP	0.157"	6.890"	1.654"	2
ΓW-B-15IP	•	15IP	0.157"	6.890"	1.654"	2

Tungaloy America, Inc.

3726 N Ventura Drive, Arlington Heights, IL 60004, U.S.A.

Inside Sales: +1-888-554-8394

Technical Support: +1-888-554-8391

Fax: +1-888-554-8392 www.tungaloy.com/us

Tungaloy Canada

432 Elgin St. Unit 3, Brantford, Ontario N3S 7P7, Canada

Phone: +1-519-758-5779 Fax: +1-519-758-5791

www.tungaloy.com/ca

Tungaloy de Mexico S.A.

C Los Arellano 113, Parque Industrial Siglo XXI Aguascalientes, AGS, Mexico 20290 Phone:+52-449-929-5410 Fax:+52-449-929-541 www.tungaloy.com/mx

Scan for instant web access

www.tungaloy.com/us

follow us at:

facebook.com/tungaloyamerica twitter.com/tungaloy instagram.com/tungaloyamerica linkedin.com/company/tungaloy-america To see Tungaloy products in action visit:

www.youtube.com/tungaloycorporation

Distributed by:

