SOLIDMEISTER

4EHP - 4 FLUTE, HIGH PERFORMANCE, CHATTER FREE SERIES

4 Flute - Variable Pitch Endmill for High-Performance Milling in General Purpose Applications

SOLIDMEISTER 4EHP SERIES

4 Flute - Variable Pitch Endmill with
Primary \& Secondary Relief Angles
for High Performance Milling

The 4EHP Series is engineered for improved chip evacuation and maximum metal removal rates

The 4EHP Series design consists of primary and secondary relief angles, with unique edge preparations and a variable pitch. It's ideal for increased metal removal rates and minimal chatter.

Benefits:

- Increased metal removal rates
- Increased depth-of-cut
- Improved accuracy
- Chatter-free machining
- Higher speeds \& feeds
- Superior surface finish on the part

Applications:

- Stainless Steels
- Carbon Steels
- Gray Cast Iron

DESIGNATION SYSTEM

The designation for the 4EC Series includes tool dimensions for easy product identification.

Variable pitch design with high performance features for chatter free machining at higher speeds and feeds.

- Extremely versatile tool for roughing, slotting, finishing and heavy profile applications.
- Provides sharper cutting edge for improved sheer action with primary and secondary relief angles.
- Excellent tool in job shops for increased metal removal rates.
- TiAICN provides low coefficient of friction, reducing tool wear for longer tool life. Ideal for materials below 45Rc.

ENDMILL AND BALLNOSE

Insert the corner radius value in the last 3 spaces for full item designation	Corner radius	Item Designation
	Square	4EC125－0500L1．5C000
	0.015	$4 \mathrm{EC} 125-0500 \mathrm{~L} 1.5 \mathrm{C} 015$
	0.030	$4 \mathrm{EC} 125-0500 \mathrm{~L} 1.5 \mathrm{C} 030$
	0.060	$4 \mathrm{EC} 125-0500 \mathrm{~L} 1.5 \mathrm{C} 060$
	0.090	$4 \mathrm{EC} 125-0500 \mathrm{~L} 1.5 \mathrm{C} 090$
	$\mathbf{0 . 1 2 5}$	$4 \mathrm{EC} 125-0500 \mathrm{~L} 1.5 \mathrm{C} 125$

				Corner Radii								
$\begin{gathered} \text { Diameter } \\ \text { DC } \\ \hline \end{gathered}$	Shank DCONMS	Flute Length APMX	Usable length LU	OAL／LF	Designation		$\stackrel{n}{\circ}$	$\begin{aligned} & \text { O} \\ & \text { ob } \\ & \hline \end{aligned}$			$\stackrel{N}{\mathrm{~N}}$	Ballnose
1／8	1／8	1／2	1／2	1.5	4EC125－0500L1．5Caロロ	－	－	－				4EB125－0500L1．5C063
3／16	3／16	5／8	5／8	2	4EC187－0625L2．0Ca믐	－	－	\bullet				4EB187－0625L2．0C094
1／4	1／4	3／8	3／8	2	4EC250－0375L2．0Ca믐	－	－	－	－			4EB250－0375L2．0C125
1／4	1／4	3／4	3／4	2.5	4EC250－0750L2．5Caua	－	－	－	\bullet			4EB250－0750L2．5C125
1／4	1／4	1	1	3	4EC250－1000L3．0Cata	－	－	－	－			4EB250－1000L3．0C125
1／4	1／4	1－1／4	1－1／4	4	4EC250－1250L4．0Cama	－	－	－	－			4EB250－1250L4．0C125
1／4	$1 / 4$	1－3／4	1－3／4	4	4EC250－1750L4．0Caqu	－	－	－	－			4EB250－1750L4．0C125
5／16	5／16	1／2	1／2	2	4EC312－0500L2．0Caua	－	－	－	－			4EB312－0500L2．0C156
5／16	5／16	7／8	7／8	2.5	4EC312－0875L2．5Caua	－	－	－	－			4EB312－0875L2．5C156
5／16	5／16	1	1	3	4EC312－1000L3．0Caロa	－	－	－	－			4EB312－1000L3．0C156
5／16	5／16	1－1／4	1－1／4	4	4EC312－1250L4．0Cםa口	－	－	－	－			4EB312－1250L4．0C156
5／16	5／16	1－5／8	1－5／8	4	4EC312－1625L4．0Caq口	－	－	－	－			4EB312－1625L4．0C156
3／8	3／8	1／2	1／2	2	4EC375－0500L2．0Cロa口	－	－	－	－			4EB375－0500L2．0C188
3／8	3／8	1	1	2.5	4EC375－1000L2．5Caロ	－	－	－	－			$4 \mathrm{~EB} 375-1000 \mathrm{~L} 2.5 \mathrm{C} 188$
3／8	3／8	1	1	3	4EC375－1000L3．0Cㅁํ	－	－	－	－			4EB375－1000L3．0C188
3／8	3／8	1－1／2	1－1／2	4	4EC375－1500L4．0Cםa口	－	－	－	－			4EB375－1500L4．0C188
3／8	3／8	2－1／2	2－1／2	5	4EC375－2500L5．0Cםa口	－	－	－	－			4EB375－2500L5．0C188
7／16	7／16	5／8	5／8	2.75	4EC437－0625L2．7Caロロ	－	－	－	－			4EB437－0625L2．7C219
7／16	7／16	1	1	2.75	4EC437－1000L2．7Caua	－	－	－	－			4EB437－1000L2．7C219
7／16	7／16	1－1／2	1－1／2	4	4EC437－1500L4．0Cana	－	－	－	－			4EB437－1500L4．0C219
7／16	7／16	3	3	6	4EC437－3000L6．0Cama	－	－	－	－			4EB437－3000L6．0C219
1／2	1／2	5／8	5／8	2.5	4EC500－0625L2．5Caxa	－	－	－	－	－	－ 4	4EB500－0625L2．5C250
1／2	1／2	1	1	3	4EC500－1000L3．0Cama	－	－	－	－		－ 4	4EB500－1000L3．0C250
1／2	1／2	1－1／4	1－1／4	3	4EC500－1250L3．0Caq口	－	－	－	－		－ 4	4EB500－1250L3．0C250
1／2	1／2	1－1／2	1－1／2	4	4EC500－1500L4．0Cㅁํ	－	－	－	－	－	－ 4	4EB500－1500L4．0C250
1／2	1／2	2	2	4	4EC500－2000L4．0Cama	－	－	\bullet	－	－	－ 4	4EB500－2000L4．0C250
1／2	1／2	2－1／2	2－1／2	5	4EC500－2500L5．0Cםa口	－	－	－	－		－ 4	4EB500－2500L5．0C250
1／2	1／2	3	3	6	4EC500－3000L6．0Cama	－	－	－	－		－ 4	4EB500－3000L6．0C250
5／8	5／8	3／4	3／4	3	4EC625－0750L3．0Cama	－	－	－	－	－	－ 4	4EB625－0750L3．0C313
5／8	5／8	1－1／4	1－1／4	3.5	4EC625－1250L3．5Caq口	－	－	－	－	－	－ 4	4EB625－1250L3．5C313
5／8	5／8	1－3／4	1－3／4	4	4EC625－1750L4．0Ca	－	－	－	－		－ 4	4EB625－1750L4．0C313
5／8	5／8	2－1／4	2－1／4	5	4EC625－2250L5．0Caםa	－	－	－	－		－ 4	4EB625－2250L5．0C313
5／8	5／8	3	3	6	4EC625－3000L6．0Ca	－	－	－	－	－	－ 4	4EB625－3000L6．0C313
3／4	3／4	7／8	7／8	3	4EC750－0875L3．0Cama	－	－	－	－	－	－ 4	4EB750－0875L3．0C375
3／4	3／4	1－1／2	1－1／2	4	4EC750－1500L4．0Caoם	－	－	－	－	－	－ 4	4EB750－1500L4．0C375
3／4	3／4	1－5／8	1－5／8	4	4EC750－1625L4．0Caם	－	－	－	－	－	－ 4	4EB750－1625L4．0C375
3／4	3／4	2－1／4	2－1／4	5	4EC750－2250L5．0Cax	－	－	－	－	－	－ 4	4EB750－2250L5．0C375
3／4	3／4	3	3	6	4EC750－3000L6．0Cana	－	－	－	－	－	－ 4	4EB750－3000L6．0C375
3／4	3／4	4	4	7	4EC750－4000L7．0Cama	－		－	－	－	－ 4	4EB750－4000L7．0C375
1	1	1－1／2	1－1／2	4	4EC1000－1500L4．0Caba	－	－	－	－	－－	－ 4	4EB1000－1500L4．0C500
1	1	2	2	4.5	4EC1000－2000L4．5Cㅁํ	－	－	－	－	－－	－ 4	4EB1000－4500L4．5C500
1	1	2－1／4	2－1／4	5	4EC1000－2250L5．0Ca	－	－	－	－	－	－ 4	4EB1000－2250L5．0C500
1	1	3	3	6	4EC1000－3000L6．0C믐	－		－	－	－－	－ 4	4EB1000－3000L6．0C500
1	1	4	4	7	4EC1000－4000L7．0Ca	－	－	－	－	－－	－ 4	4EB1000－4000L7．0C500

NECKDOWN

	Corner radius	Item Designation
	Square	4EC125-0500L1.5C000
Insert the corner radius value in the last 3 spaces for full item designation	0.015	4EC125-0500L1.5C015
	0.030	$4 \mathrm{EC} 125-0500 \mathrm{~L} 1.5 \mathrm{C} 030$
	0.060	$4 \mathrm{EC} 125-0500 \mathrm{~L} 1.5 \mathrm{C} 060$
	0.090	$4 \mathrm{EC} 125-0500 \mathrm{~L} 1.5 \mathrm{C} 090$
	0.125	$4 \mathrm{EC} 125-0500 \mathrm{~L} 1.5 \mathrm{C} 125$

Corner Radii

STANDARD CUTTING CONDITIONS

Slotting

		SFM (Vc)	Chipload Per Tooth Recommendations (CPT)										Profiling Radial		Slotting Axial ADC
			1/8"	3/16"	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	1"	ADC	RDC	
P1	\bullet	400	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 004	N/A	N/A	. $6-1.25 \times \mathrm{D}$
P2	\bullet	400	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 004	N/A	N/A	. $6-1.25 \times \mathrm{D}$
P3	\bullet	350	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 004	N/A	N/A	.6-1.25xD
P4	-	200	. 000	. 001	. 001	. 001	. 001	. 001	. 001	. 001	. 002	. 003	N/A	N/A	. $6-1.25 \times \mathrm{x}$
P5	\bullet	300	. 001	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 003	. 004	N/A	N/A	.6-1.25xD
P6	-	300	. 001	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 003	. 004	N/A	N/A	. $6-1.25 \times \mathrm{D}$
M1	\bullet	175-250	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 004	N/A	N/A	. $6-1.25 \times \mathrm{D}$
M2	\triangle	175-250	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 004	N/A	N/A	.6-1.25xD
M3	Δ	120-225	. 000	. 001	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 003	N/A	N/A	.6-1.25xD
K1	\bullet	350-450	. 001	. 001	. 002	. 002	. 003	. 003	. 004	. 005	. 006	. 008	N/A	N/A	. $6-1.25 \times \mathrm{x}$
K2	\bullet	275	. 001	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 004	N/A	N/A	.6-1.25xD
K3	\bullet	275	. 001	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 004	N/A	N/A	. $6-1.25 \times \mathrm{x}$
S1	-	90-175	. 001	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 004	N/A	N/A	.6-1.25xD
S2	A	90-175	. 001	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 004	N/A	N/A	.6-1.25xD
S4	\triangle	140-200	. 000	. 001	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 004	N/A	N/A	.6-1.25xD

We recommend using air blast to cool the tool anytime you are running over 500 SFM

MILL PROCESS	ADOC	RDOC
Slotting	$50 \%-100 \%$ Diameter	100%
Roughing	200% Diameter	$30-40 \%$
Finish or HEM	225% Diameter	$2-15 \%$

Must use chip thinning calculations when developing feed rates for FINISH OR HEM toolpaths.

Tool	Max Ramp Angle	SFM / MMPM	Feed	Max Ramp Depth	Max Ramp Length
$4 E C$	$2.5^{\prime \prime}$	Slotting speed	Slotting IPT or CPT $\times .75$	50% of D	$(.5 \times D) /$ drop per inch or mm

D = Tool Diameter

STANDARD CUTTING CONDITIONS

Heavy Peripheral

			Chipload Per Tooth Recommendations (CPT)										Profiling Radial		Slotting Axial
		SFM (Vc)	1/8"	$3 / 16^{\prime \prime}$	$1 / 4$ "	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	$1{ }^{\prime \prime}$	ADC	RDC	ADC
P1	\bullet	400	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 003	. 004	. 005	.75-1.5xD	. $25-.4 \times \mathrm{D}$	N/A
P2	\bullet	400	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 003	. 004	. 005	.75-1.5xD	. $25-4 \times \mathrm{D}$	N/A
P3	\bullet	350	. 0006	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 003	. 005	.75-1.5xD	. $25-4 \times \mathrm{D}$	N/A
P4	-	200	. 0004	. 0007	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 003	.75-1.5xD	. $25-4 \times \mathrm{D}$	N/A
P5	\bullet	300	. 0007	. 001	. 001	. 002	. 002	. 002	. 003	. 004	. 004	. 006	.75-1.5xD	. $25-4 \times \mathrm{D}$	N/A
P6	-	300	. 0007	. 001	. 001	. 002	. 002	. 002	. 003	. 004	. 004	. 006	.75-1.5xD	. $25-4 \times \mathrm{D}$	N/A
M1	\bullet	175-250	. 0005	. 0007	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 004	.75-1.5xD	. $25-.4 \times \mathrm{D}$	N/A
M2	A	175-250	. 0005	. 0007	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 004	.75-1.5xD	. $25-.4 \times \mathrm{D}$	N/A
M3	Δ	120-225	. 0005	. 0007	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 004	.75-1.5xD	. $25-.4 \times \mathrm{D}$	N/A
K1	\bullet	350-450	. 001	. 001	. 001	. 002	. 003	. 003	. 004	. 005	. 006	. 008	.75-1.5xD	. $25-.4 \times \mathrm{D}$	N/A
K2	\bullet	275	. 0006	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 004	. 005	.75-1.5xD	. $25-.4 \times \mathrm{D}$	N/A
K3	\bullet	275	. 0006	. 001	. 001	. 001	. 002	. 002	. 002	. 003	. 004	. 005	.75-1.5xD	. $25-4 \times \mathrm{D}$	N/A
S1	-	90-175	. 0007	. 001	. 001	. 001	. 002	. 002	. 003	. 003	. 004	. 005	.75-1.5xD	. $25-4 \times \mathrm{D}$	N/A
S2	A	90-175	. 0007	. 001	. 001	. 001	. 002	. 002	. 003	. 003	. 004	. 005	.75-1.5xD	. $25-4 \times \mathrm{D}$	N/A
S4	-	140-200	. 0006	. 001	. 001	. 001	. 002	. 002	. 002	. 002	. 003	. 004	.75-1.5xD	. $25-.4 \times \mathrm{D}$	N/A
								Periph					rst Priority	A : S	econd Priority

			Chipload Per Tooth Recommendations (CPT)										Profiling Radial		Slotting Axial
		SFM (Vc)	1/8"	3/16"	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	$1 "$	ADC	RDC	ADC
P1	\bullet	400	. 0005	. 0008	. 001	. 001	. 001	. 001	. 002	. 002	. 002	. 003	1xD	. $05 \times \mathrm{D}$	N/A
P2	-	400	. 0005	. 0008	. 001	. 001	. 001	. 001	. 002	. 002	. 002	. 003	1xD	. $05 \times \mathrm{D}$	N/A
P3	-	350	. 0005	. 0007	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 004	1xD	. $05 \times \mathrm{D}$	N/A
P4	A	200	. 0003	. 0004	. 0005	. 0006	. 0008	. 0009	. 001	. 001	. 001	. 002	1xD	. $05 \times \mathrm{x}$	N/A
P5	\bullet	300	. 0004	. 0007	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 003	1xD	. $05 \times \mathrm{D}$	N/A
P6	A	300	. 0004	. 0007	. 001	. 001	. 001	. 001	. 002	. 002	. 003	. 003	1xD	.05xD	N/A
M1	\bullet	175-250	. 0004	. 0005	. 0007	. 001	. 001	. 001	. 001	. 001	. 002	. 003	1xD	. $05 \times \mathrm{xD}$	N/A
M2	-	175-250	. 0004	. 0005	. 0007	. 001	. 001	. 001	. 001	. 001	. 002	. 003	1xD	.05xD	N/A
M3	A	120-225	. 0003	. 0004	. 0005	. 0006	. 0008	. 001	. 001	. 001	. 001	. 002	1xD	. $05 \times \mathrm{D}$	N/A
K1	\bullet	350-450	. 001	. 001	. 002	. 002	. 003	. 003	. 003	. 004	. 005	. 007	1xD	.05xD	N/A
K2	\bullet	275	. 0004	. 0006	. 0008	. 001	. 001	. 001	. 001	. 002	. 002	. 003	1xD	.05xD	N/A
K3	\bullet	275	. 0004	. 0006	. 0008	. 001	. 001	. 001	. 001	. 002	. 002	. 003	1xD	.05xD	N/A
S1	A	90-175	. 0003	. 0004	. 0006	. 0007	. 0008	. 001	. 001	. 001	. 002	. 002	1xD	. $05 \times \mathrm{D}$	N/A
S2	A	90-175	. 0003	. 0004	. 0006	. 0007	. 0008	. 001	. 001	. 001	. 002	. 002	1xD	.05xD	N/A
S4	A	140-200	. 0003	. 0004	. 0006	. 0007	. 001	. 001	. 001	. 001	. 002	. 002	1xD	. $05 \times \mathrm{D}$	N/A
													irst Prio		Second Priority

HELICAL RAMP TO CREATE AN ENTRY HOLE

Using a helical ramp move to generate an entry hole is a preferred method to enter the middle of a part. The creation of the entry hole can be either a onestep or a two-step process depending on the number of flutes on the end mill.

Step 1: Create helical ramp entry hole

The diameter of the starting hole will be: (tool diameter x 2) - (corner radius x 2)
Use the following guide for speed, feed and ramp angle parameters. Note that the terms "Same as chart", "Slotting speed in chart", "Slotting feed in chart" and IPT and CPT reference the data that is shown in the speed and feed charts located in each tool series section.

Tool	Speed	Feed Adjustment	Ramp angle	$1 "-1.25^{\prime \prime}$
$4 E C$	Slotting speed in chart	Slotting feed in chart		
CW=Clockwise				

Workpiece type	Collet Block	Machine part
Cutter	$3 / 8 \times 3 / 8 \times 1 / 2 \times 2-4 \mathrm{~F}$	$5 / 8 \times 5 / 8 \times 3 / 4 \times 3-4 F$
Description	4HC375-0500L2.0C030	4HC625-0750L3.0C015
	A2 300BHN	4140 Alloy Steel (28 HRC)
Workpiece material		
Cutting speed: Vc (sfm)	350	350
Feed per tooth: fz (ipt)	0.001"	0.008"
Feed speed: Vf (ipm)	15.67"	17"
Depth of cut: ap (inch)	0.38"	0.300"
Width of cut: ae (inch)	0.375"	0.625"
Machining	Shoulder Milling	Slotting
Coolant	Wet	Wet
Machine	Okuma Vertical	Mazak 1-800
Results	 Variable design allows chatter free machining at higher speeds and feeds to reduce cycle time.	longer Unique flute design and coating improve tool life in slotting applications.

PRACTICAL EXAMPLES

Workpiece type	Housing	Base Plate
Cutter	5/8 X 5/8 X 3/4 X 3-4F	5/8 X 5/8 X 1×5 - 4F Neck Down
Description	4HC625-0750L3.0C060	4HC625-1000L5.0C030N
	422 ss (36HRC)	304ss 275 Brinnel
Workpiece material		
Cutting speed: Vc (sfm)	630	800
Feed per tooth: fz (ipt)	0.0021"	0.0027"
Feed speed: Vf (ipm)	54.65"	112"
Depth of cut: ap (inch)	1.7"	1.75"
Width of cut: ae (inch)	0.0625"	0.03"
Machining	Shoulder Milling	Pocketing
Coolant	Air	Air
Machine	Mazak I-800	Mazak 1-800
Results	 Variable pitch eliminates chatter and TiALCN coating provides both heat and oxidation resistance improving tool life.	 High Performance 4 flute solid carbide endmill is designed for improved chip evacuation and maximum metal removal rates. Extended reach provides more stable option in deep pocketing operations.

Tungaloy America, Inc.

3726 N Ventura Drive, Arlington Heights, IL 60004, U.S.A.
Inside Sales: +1-888-554-8394
Technical Support: +1-888-554-8391
Fax: +1-888-554-8392
www.tungaloy.com/us

Tungaloy Canada

432 Elgin St. Unit 3, Brantford, Ontario N3S 7P7, Canada
Phone: +1-519-758-5779 Fax: +1-519-758-5791
www.tungaloy.com/ca

Tungaloy de Mexico S.A.

C Los Arellano 113, Parque Industrial Siglo XXI
Aguascalientes, AGS, Mexico 20290
Phone:+52-449-929-5410 Fax:+52-449-929-5411
www.tungaloy.com/mx

Scan for instant web access

- YouTube

